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Viscoelastic properties of actin-coated membranes
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In living cells, cytoskeletal filaments interact with the plasma membrane to form structures that play a key
role in cell shape and mechanical properties. To study the interaction between these basic components, we
designed anin vitro self-assembled network of actin filaments attached to the outer surface of giant unilamellar
vesicles. Optical tweezers and single-particle tracking experiments are used to study the rich dynamics of these
actin-coated membranes~ACM!. We show that microrheology studies can be carried out on such an individual
microscopic object. The principle of the experiment consists in measuring the thermally excited position
fluctuations of a probe bead attached biochemically to the membrane. We propose a model that relates the
power spectrum of these thermal fluctuations to the viscoelastic properties of the membrane. The presence of
the actin network modifies strongly the membrane dynamics with respect to a fluid, lipid bilayer one. It induces
first a finite~v50! two-dimensional~2D! shear modulusG2D

0 ;0.5 to 5mN/m in the membrane plane. More-
over, the frequency dependence at high frequency of the shear modulus@G2D8 ( f ); f 0.8560.07# and of the
bending modulus (kACM( f ); f 0.5560.21) demonstrate the viscoelastic behavior of the composite membrane.
These results are consistent with a common exponent of 0.75 for both moduli as expected from our model and
from prior measurements on actin solutions.

DOI: 10.1103/PhysRevE.63.021904 PACS number~s!: 87.19.Tt, 68.03.2g, 82.65.1r, 87.80.2y
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I. INTRODUCTION

In plant and animal cells, membranes and cytoskel
filaments interact strongly together and with other associa
proteins to form stable or dynamic structures involved in c
shape, mechanical properties, and locomotion@1#. In vitro
experiments are used to understand the interactions of t
basic components of living cells and their self-assembl
abilities. For example, microtubules and motors se
assemblein vitro into structures as asters similar to the o
observed in vivo @2#; microtubules, polymerizing inside
vesicles, can deform them far from their equilibrium sha
@3#; actin filaments form cortical-like structures while grow
ing inside vesicles@4#.

Cytoskeletal filaments are biopolymers that interact w
numerous proteins to achieve complex functions in cells. A
other important property is their large persistence length~17
mm for actin filaments@5,6#, a few millimeters for microtu-
bules@6#! compared to the flexible polymers’ one: they a
thus called semiflexible polymers. This feature is at the ba
of the mechanical and rheological properties of actin fi
ments solutions. Microrheology experiments on actin fi
ments in bulk have shown a frequency dependence of
elastic and loss moduli@7–9# in agreement with theoretica
expectations@10#. The moduliG3D8 andG3D9 increase at high
frequencies asf 0.75. Below frequencies of order 1 Hz,G3D8
tends towards a nearly constant~plateau! value @9,11,12#.

Less is known about the mechanical properties of cy
skeletal filament and lipid membranes assemblies. S
composite structures are often observedin vivo, as, e.g., in
the case of actin cortical networks attached to the inte
leaflet of the plasma membrane@1#, of spectrin networks
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recently observed in the Golgi apparatus@13#, or of the red
blood cell membrane@1#. This latter one consists of a two
dimensional~2D! network of spectrin tetramers linked to
gether by short actin filaments and attached to the memb
by protein complexes. Whereas pure fluid lipids membra
have no shear modulus and are characterized only by t
Helfrich bending elasticity@14,15# ~bending moduluskfluid
;10– 20kBT @15–17#!, the red blood cell membrane pos
sesses a finite shear modulus of a fewmN/m @18–20# and a
bending modulus of the order of 5 to 175kBT, depending on
the measurement techniques@21–23#.

This example demonstrates that networks of stiff fi
ments attached to lipid membranes induce strong modifi
tions of their mechanical properties. To understand qual
tively and quantitatively how cytoskeletal networks modi
the mechanical properties of membranes, we tailored c
posite structures obtained by self-assembly of actin fi
ments, stabilized in length, reticulated and biochemically
tached to the surface of giant vesicles. A quasi-tw
dimensional cross-linked network is formed. This tailor
microstructure is composed of two components that h
been widely studied in the past in isolation@5–11,14–17,24#.
Besides an increase of the elastic moduli with respect t
fluid lipid membrane, a more complex dynamics is expect
we have shown recently that this system exhibits viscoe
ticity @25#. We present in this paper a complete description
our experiments as well as the results demonstrating the
dynamics of these composite membranes.

To observe and measure these dynamical properties
perform microrheology experiments on single vesicles, us
micrometer probe beads biochemically linked to the me
branes. We manipulate and track the motion of these be
with optical tweezers. Our results are compared to those
tained with fluid vesicles, without the actin shell. The the
mally excited position fluctuations of the beads are measu
©2001 The American Physical Society04-1
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E. HELFERet al. PHYSICAL REVIEW E 63 021904
over a large frequency range~10 Hz up to a few kHz! with
nanometer scale resolution using a position detection se
The basic principle of the measurement is illustrated by
following simple example. For a bead trapped in solutio
the power spectrum of its thermally excited position fluctu
tions is a Lorentzian of parameters determined only by
trap stiffnessk and the drag coefficientz56phRb of the
bead~radiusRb! in the solvent of shear viscosityh @26#,

S~ f !5^x2~ f !&5
2zkBT

4p2z2f 21k2 . ~1!

When the bead is attached to a vesicle, the power spectru
modified due to the forces exerted by the membrane on
bead. The membrane energy consists of a sum of a ben
term ~with modulusk! @14,15# and, only in the case of actin
coated membranes, a term related to the in-plane viscoe
ticity ~2D complex modulusG2D5G2D8 1 iG2D9 !. In this case,
the power spectrum depends onk, h, k, andG2D . Therefore,
changes in the spectrum before and after attachment
vesicle are directly associated with the membrane mech
cal properties. Whereas the motion of large beads is do
nated by the bulk viscous drag, we show that, for sm
enough beads, the fluctuations in the plane of the memb
are related to its in-plane shear viscoelasticity~‘‘in-plane’’
fluctuations! and those perpendicular to the membrane pla
called ‘‘undulations,’’ to its bending elasticity~‘‘out-of-
plane’’ fluctuations!. We obtain by this technique a comple
description of the mechanical properties of the membr
over a large frequency range.

II. MATERIALS AND METHODS

A. Biotinylated vesicles

Vesicles are composed of a mixture of two phospholip
~purchased from Avanti Polar Lipids!: 1,2-Dioleoyl-sn-
Glycero-3-Phosphocholine~DOPC! and 1,2-Dioleoyl-sn-
Glycero-3-Phosphoethanolamine-N-~CapBiotinyl! ~DOPE-
B-Cap! which has a biotin group attached to its hydrophi
head. Both lipids have unsaturated fatty chains of 18 c
bons, whose fusion temperature is below 20 °C (Tf
;210 °C) @27#. Vesicles are prepared by electroformati
@28#. A solution of phospholipids, containing 95% DOP
and 5% DOPE-B-Cap dissolved in chloroform, is spread
two indium tin oxide ~ITO! glass slides and dried unde
vacuum. The slides are assembled face to face and held
with a Teflon spacer~1 mm thick!. The swelling solution
~100 mM sucrose, 2 mM Tris-HCl, pH 8.0, and 0.01% NaN3!
is injected in the chamber held at 30 °C. An alternating fi
of 1 Vpp and 10 Hz is applied between the two slides dur
4 h. After swelling, the vesicles are diluted in a gluco
solution ~105 mM glucose, 2 mM Tris-HCl, pH 8.0, an
0.01% NaN3! of same osmolarity as the sucrose on
Vesicles are then stored under argon atmosphere at 4 °C
ing at most two weeks. Vesicles grown by this technique
giant ~up to about 50–100mm in diameter! and known to be
mostly unilamellar@29#. By labeling the biotinylated vesicle
with rhodamin-streptavidin~Molecular Probes!, we observe
a homogeneous fluorescent contour of the vesicles~images
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not shown!, which indicates that there is no large scale se
regation between the two phospholipids.

B. Biotinylated actin filaments

Actin filaments are prepared by the standard method
Pardee and Spudich@30#. Monomeric actin is purified from
acetone powder, which has been extracted from chic
muscle, and dissolved at 1.5 mg/ml in a low salt buffer~G
buffer: 2 mM Tris-HCl, pH 8.0, 0.5 mM ATP~Adenosine
58-triphosphate!, 0.2 mM CaCl2, 0.5 mMb-mercaptoethano
and 0.01% NaN3!. Acetone powder is kept at230 °C and
actin monomers can be stored in liquid nitrogen for at le
one year. About 15% of the monomers are labeled w
biotin-iodoacetamide~Molecular Probes!. Actin polymeriza-
tion is induced by adding 50 mM KCl and increasing t
ATP concentration to 1 mM~F buffer! at an actin concentra
tion of 0.1 mg/ml~;2.4 mM!. The actin filaments are stab
lized against depolymerization and fluorescently labeled w
rhodamin-phalloidin~Molecular Probes! at 1 mM and stored
at 4 °C for one week. The filaments are observed in fluor
cence microscopy~actin concentration of 10 to 15 nM!: the
filaments’ length lies from 1mm to about 20mm and the
average length is of the order of 10mm.

C. Actin-coated membranes„ACM …

Actin-coated vesicles are obtained by mixing vesicles a
actin filaments in presence of streptavidin~Molecular
Probes!. This protein has four sites with high affinity fo
biotin ~in saline solution! @31# and stable biochemical links
are expected to establish between biotinylated lipids and
tin monomers as well as between monomers themsel
Vesicles and filaments are diluted in a buffer containing
mM KCl, which induces also a 10% osmolarity differenc
between the inside and the outside of the vesicles. The
motic pressure difference makes the fluid~uncoated! vesicles
flaccid: thermal undulations of the membranes are clea
seen by videomicroscopy@17,21#. Using an actin concentra
tion of 15 nM, a streptavidin concentration of 0.02 nM and
low concentration of vesicles~a few vesicles in the field of
view of 100mm!, vesicles covered by a network of fluore
cent actin filaments are obtained after about 1 h incubation
~Fig. 1!. In the median plane, a thin and homogeneous a
ring is visualized whereas images taken on the top or bot
of vesicles show sometimes individual filaments. Strepta
din concentration was chosen to optimize the actin den
on the vesicles. Higher actin concentrations were not u
since they lead to the formation of a thicker 3D gel.

The structural parameters of actin networks cannot be
cisely determined from fluorescence images and may
depend significantly on the vesicles. Nevertheless, we e
mate that the actin shell thicknessh is below 1mm and that
the mesh sizej of the network should also lie around 0.1
1 mm. Finally, it is not possible to estimate the reticulatio
rate of the actin gels on the vesicles; let us only note t
streptavidin is a much less concentrated on the vesicle
face than actin.

Two qualitative observations demonstrate the striking
fects of the actin network on the membranes properties.
4-2
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VISCOELASTIC PROPERTIES OF ACTIN-COATED MEMBRANES PHYSICAL REVIEW E63 021904
first of these is a considerable decrease of the thermal u
lations of the vesicles contour, which can be interpreted a
significant increase of the bending modulus. Second, w
two beads are attached on a vesicle~see below!, a displace-
ment tangent to the membrane plane of one of them~im-
posed with an optical tweezers! induces a symmetric motion
of the second one. This indicates that the composite m
brane has a shear modulus.

These self-assembled membranes are different from s
tures designed by other groups, such as actin filaments
sorbed on positively charged vesicles@32# or actin filaments
growing inside vesicles and deforming them@4#. In particu-
lar, in comparison to this latter case, the actin network is
our construct intrinsically coupled to the lipid membrane
the biotin-streptavidin bonds.

D. Micromanipulation and single-particle tracking

In the case of simple fluid membranes, thermal undu
tions have an amplitude of the order of a few 100 nm and
be measured by videomicroscopy@17#. In contrast, in the
presence of the actin network, thermal undulations are ha
visible. To measure them as well as fluctuations in the me
brane plane, we have used a single-particle tracking met
Single-particle tracking techniques have been used to m
sure the viscoelastic properties of homogenous solut
with a high spatial accuracy and over a large frequency ra
@7#.

Beads coated with streptavidin are mixed with vesic
just before the experiment. They can bind either to
biotinylated phospholipids~in the case of fluid vesicles! or to
the biotinylated actin monomers in the filaments~actin-

FIG. 1. Actin-coated vesicles~15 mm in diameter! observed at
different planes by fluorescence microscopy. The medium pla
show high fluorescent contours of the vesicles, indicating that t
are homogeneously coated by an actin filaments shell. In inferio
superior planes one can sometimes distinguish individual filame
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coated vesicles!. Vesicles are studied in a closed chamber~1
mm thick! sealed with two glass coverslips coated with B
vin Serum Albumin to reduce the sticking of vesicles a
actin to the glass. A probe bead held by optical tweezer
bound to a vesicle~15 to 20mm in diameter! by moving the
microscope stage. Binding occurs in a few seconds. Ac
coated vesicles attach weakly to the coverslips, which p
vents large scale motion of the vesicles. In the case of fl
vesicles, a second bead~manipulated with a second optica
trap! is attached to the vesicle at a position diametrica
opposed to the first one and is strongly trapped to av
vesicle displacement. The position in time of the probe be
is measured in order to compare the power spectra of
thermally excited position fluctuations of the bead before a
after attachment, at several laser powers.

The setup of optical tweezers and particle position det
tion is implemented on a home-built microscope~Fig. 2!. An
infrared laser beam is highly focused by a high numeri
aperture objective to trap dielectric particles. The optical t
can be displaced in the focal plane of the objective by
flecting the laser with acousto-optic modulators. Rap

es
y

or
ts.

FIG. 2. The experimental setup is performed on a home-b
microscope. The infrared laser~Topaz 1064 nm, Spectra Physics! is
focused by the microscope objective of high numerical apert
~Plan Neofluar 1003, N.A. 1.3, Zeiss! which creates an optical trap
in the objective focal plane. The rapid deflection of the laser by
acousto-optic modulators ~AA.DTS.XY-250, A&A Opto-
Electronique! allows us to locate one or two traps in the samp
The infrared light backscattered by the trapped bead is used to m
an image of the bead on a two-quadrant photodiode~S3096-02,
Hamamatsu!. The difference between the two tensions~converted
from the currents through 10 kV resistances! is amplified by a low-
noise amplifier~SR-560, Stanford Research Systems! with a 30 kHz
bandwidth. The differential voltage is acquired with a Lab-PC 12
acquisition board at 60 kHz and the power spectrum of the posi
fluctuations is computed using a software written under Labv
~National Instruments!.
4-3
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switching of the trap between different positions allows us
create multiple tweezers@33# when needed, i.e., in the cas
of fluid vesicles only: in order to trap two beads, the las
beam is moved every 200ms from one location to the othe
one.

The infrared light backscattered by the trapped bead
used to form an image of the bead on a two-quadrant ph
detector. Each quadrant delivers a current proportional to
received light intensity. The currents are converted into v
ages, and their difference, amplified by a low noise amplifi
is proportional to the bead position in the trap. The be
position can be then measured with a high frequency ba
width ~up to a few kHz!, once the calibration factora ~a
relation between measured voltage and actual position! is
determined. Depending on the orientation of the photodio
position fluctuations parallel or perpendicular to the me
brane plane are measured.

E. Principle of calibration and measurement

From the Langevin equation of the motionx(t) of a bead
of radiusRb in the harmonic potential of the optical twee
zers, one deduces the power spectrum of the position fl
tuations of the trapped bead^x2( f )& @26# which is a Lorent-
zian @see Eq.~1!#. The corner frequencyf c5k/(2pz) of the
spectrum depends on the trap stiffness which varies line
with the laser power. Belowf c , the power spectrum is con
stant ~equal to a plateau valueS052zkBT/k2!. Above f c ,
the spectral density of the position fluctuations is that o
Brownian particle (; f 22). Both the spring constant of th
trap k ~N/m!, and the calibration factor of the tracking setu
a ~V/nm!, are independently determined from the pow
spectrum of the bead motion@26#. In Fig. 3 are shown the
power spectra of two beads of same size~2.8 mm in diam-
eter! trapped with two different stiffnesses. By applying

FIG. 3. Power spectra of the position fluctuations of 2.8mm
beads trapped at two different laser powers. The curve with
highest plateau value corresponds to the lowest stiffnesk
51.131025 N/m ( f c;70 Hz); the second one corresponds tok
53.731025 N/m ( f c;200 Hz!. We show in the inset the depen
dence of the corner frequencyf c as a function of the laser powerP
for 1 mm beads.
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Lorentzian fit to the data,k and a are determined in each
case. The corner frequency increases as expected with
stiffness: in the inset in Fig. 3 is shown the linear depe
dence off c as a function of the laser power, in the case o
mm beads. The high frequency regime does not depend
the presence of the tweezers and a power law of expo
2260.02, consistent with Brownian motion, is fitted to th
data abovef c .

Once the calibration spectrum of the position fluctuatio
of the probe bead has been obtained, the bead is bound t
membrane~fluid or actin-coated one! and the spectrum is
again computed. The bead motion is measured in two di
tions, perpendicular to the membrane plane~‘‘out of plane’’!
and parallel to the membrane plane~‘‘in plane’’ !. As the
fluctuations are of small amplitude, out-of-plane motion w
be related to the membrane bending elasticity and in-pl
displacement to its shear elasticity. In practice we use a
stiffness as low as possible~f c;10 to 50 Hz!: abovef c the
power spectrum does not depend onk but only on the mem-
brane properties and on the solvent viscosity. Figure 4 sh
effectively that the fluctuations power spectra of a bead
tached to an actin-coated vesicle are independent of the
stiffness above the highest corner frequency.

Spectra before and after attachment to the vesicles
compared. In particular, the spectrum amplitude and
power law fitted to the data are analyzed. Power laws
fitted to the experimental spectra between 50–100 Hz~im-
posed byf c! and about 1 kHz in the case of fluid membran
and 4 kHz for actin-coated ones. The limit of 1 kHz is im
posed by the time sharing of the laser between two locati
in the case of fluid vesicles. The second limit correspond
an unexplained and rapid crossover in the fluctuations po
spectrum of a trapped bead towards a new reg
(; f 22.5), which limits the frequency range well above th
noise level@7#. Power spectra are therefore studied ove

e

FIG. 4. Power spectra of the out-of-plane position fluctuatio
of a 1 mm bead attached to an actin-coated vesicle~14 mm! and
trapped at different stiffnessesk of 2.5, 6.5, and 9.4mN/m, respec-
tively, drawn as a dashed, thin solid, and thick solid lines. Abo
around 200 Hz~highest corner frequency! the three curves join and
a power law of exponent21.8360.04 is fitted to the data~the error
bar is statistically estimated with the three curves!.
4-4
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frequency range of one to two decades, which correspond
two to four decades in amplitude, making it possible to d
tinguish between quite close power-law exponents. Let
note that an error bar on the power-law exponent is co
puted for each spectrum using a least-square-fit method~the
Levenberg-Marquardt algorithm!. This error is mentioned in
the captions of figures showing individual spectra. It is, n
ertheless, smaller than the statistical error obtained from
study of a few tens of vesicles. This statistical error is use
the text.

III. RESULTS

We present results obtained with beads of 1 and 1.5mm in
diameter. Out-of-plane and in-plane fluctuations are se
rately analyzed. In each case, the power spectra of the p
tion fluctuations of beads bound to fluid and actin-coa
membranes are shown and compared to a calibration s
trum ~trapped bead!.

A. Out-of-plane fluctuations

Figure 5 shows the power spectrum obtained for the o
of-plane motion of a 1.5mm bead attached to a fluid vesic
and weakly trapped (k5231026 N/m) and the one mea
sured for the same bead in the trap of same stiffness be
attachment. The amplitude of the spectrum is clearly sma
in the presence of the membrane. Power laws are fitted to
data above the trap corner frequency. We measure for th
two curves two different exponents of21.6860.03 ~out-of-
plane power spectrum! and 22.0160.02 ~calibration spec-
trum!. In all the experiments achieved with fluid membran
the same spectrum amplitude is measured. The ave
power-law exponents measured statistically are21.760.05

FIG. 5. Power spectrum of the out-of-plane fluctuations~thick
solid line! of a 1.5mm bead attached to a fluid vesicle~18 mm! and
trapped with a small stiffness (k5231026 N/m). It is compared to
the calibration power spectrum measured for the same bead tra
in solution with the same stiffness~thin solid line!. Above the trap
corner frequency~;20 Hz!, power laws of exponents21.68
60.03 ~fluid membrane! and22.0160.02 ~trapped bead! are best
fits to these data. Lines of slopes21.68 and22 are drawn as guide
to the eyes, respectively, below and above the curves.
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~fluid vesicle! and2260.02~trapped bead!. The error bar of
0.05 ~which is indeed larger than the individual error me
sured for each spectrum! is statistically estimated from 12
curves obtained with 4 vesicles and 1 or 1.5mm beads.

In the case of actin-coated membranes, a larger decr
of the power spectrum amplitude is observed: we show
Fig. 6 the two previous spectra and the one obtained for a
mm bead attached to an actin-coated vesicle and trapped
the same stiffness. The out-of-plane power spectrum am
tude drops by a factor 3.6~measured at 500 Hz! between the
cases of the fluid membrane and of the actin-coated one.
the composite membrane, the power-law exponent
21.8860.01. Considering all the experiments with acti
coated vesicles~24 curves and 11 vesicles!, we measured
first that the amplitude decreases by a factor 361 in com-
parison to the fluid case~at 500 Hz!. The power-law expo-
nent fitted to the data is statistically21.8560.07 and is dif-
ferent from the one obtained with fluid vesicles (21.7
60.05). Note that these close exponents can be dis
guished since power laws are measured over a freque
range of 1 to 2 decades, corresponding to 2 to 4 decade
amplitude.

B. In-plane fluctuations

We show in Fig. 7 the power spectra of the in-plane flu
tuations of 1mm beads attached to a fluid and to an act
coated vesicle in comparison to the one measured fo
weakly trapped bead. One notes immediately that the p
ence of the fluid membrane does not affect the motion of
trapped bead. By fitting power laws to these data, we ob
similar exponents of21.9860.02~bead attached to the fluid
membrane! and21.9760.02~trapped bead!. This result was
observed for all in-plane measurements performed with fl
membranes.

In the presence of the actin network, the power spectr
is clearly shifted towards smaller amplitude, by a factor 2

ed

FIG. 6. Power spectra of the out-of-plane fluctuations of 1.5mm
beads trapped in solution~dashed line!, attached to a fluid mem-
brane~thin solid line! and attached to an actin-coated membra
~thick solid line!. A power law of exponent21.8860.01 best fits
the last curve. Lines of slopes22, 21.68, and21.88 are drawn as
guides to the eyes, from the top to the bottom of the picture.
4-5
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500 Hz. A power law of exponent21.8760.02 is best fitted
to the curve. In all the measurements with actin-coa
vesicles~18 curves and 8 vesicles!, the amplitude of the in-
plane power spectrum can vary by a factor of 2.560.5, de-
pending on the vesicle. Finally, an exponent of21.85
60.07 is measured.

IV. MODEL

We present in this section a model whose aim is to
plain the variation of amplitudes and of power-law exp
nents observed in the previous experiments. For fl
vesicles, the energy is solely characterized by bend
@14,15# ~bending moduluskfluid;10– 20kBT @15–17#!. There
is no shear modulus in this case and membrane shear vis
ties hs are typically of the order of 10210 to a few
1029 Pa m s@34,35#. In presence of the actin network, w
describe the membrane as a homogeneous medium w
energy is the sum of two terms: A bending term, as in
fluid case, but with a different bending moduluskACM , and a
term related to in-plane viscoelasticity~viscoelastic complex
modulusG2D5G2D8 1 iG2D9 !. Moreover, we assume that th
moduli G2D8 andG2D9 scale with frequency

G2D8 ~ f !;G2D9 ~ f !; f z, ~2!

as in the case for bulk actin solutions~G3D8 ;G3D9 ; f z, with
z'0.75! @7–10#. This scaling is related to the semiflexib
character of the actin filaments and to the relaxation of be
ing modes along them@10,36#. At low frequency, we assum
that G2D8 tends towards a plateau valueG2D

0 .
On the other hand, for a homogeneous plate of thickn

h, the elastic shear (G8) and bending~k! moduli are related
by a simple geometric law@37,38#:

FIG. 7. Power spectra of the in-plane fluctuations of 1mm beads
trapped in solution~dashed line!, attached to a fluid membrane~thin
solid line!, and attached to an actin-coated membrane~thick solid
line!. The data are best fitted by power laws of respective expon
21.9760.02,21.9860.02, and21.8760.02. Lines of slopes22
and21.87 are, respectively, drawn above and below the curve
guides to the eyes.
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k5G8h2/3. ~3!

Therefore, we also assume that the bending modulus
actin-coated vesicles depends on the frequency with the s
power law asG2D8 ,

kACM~ f !; f z. ~4!

Using this hypothesis, we compute the thermally exci
position fluctuations of the probe bead on which both
membrane and the surrounding fluid exert forces. Since fl
tuations are thermally excited, their amplitude is small: a
consequence, we consider that the fluctuations in the plan
the membrane and perpendicular to it are not coupled. T
are related, respectively, to the in-plane viscoelasticity an
the bending elasticity. For both directions, we first comp
the fluctuations power spectrum of a point on the membr
and consider then the perturbation due to the bead.

A. Out-of-plane motion

The out-of-plane fluctuations of a point on a flat and
finite membrane are first considered. As the membrane
face tensiong is negligible@15#, the thermal undulations o
the membrane are dominated by the Helfrich bending ene
@14,15,21#,

Eb5 1
2 E k@¹2h~rW !#2ds, ~5!

wherek is the bending modulus,¹2h is the mean curvature
and h(r) is the membrane transverse displacement at
coordinater of a planar reference state. Let the spatial Fo
rier transformation beh(r)5Shqeiq"r, wherehq is the fluc-
tuations amplitude of a modeq in the Fourier space. One
obtains

Eb5 1
2 kL2(

q
q4hqh2q , ~6!

whereL2 is the membrane area. Using the energy equipa
tion theorem, one deduces from Eq.~6! the fluctuations mean
square amplitude of the modeq: ^uhqu2&5kBT/(kL2q4). The
corresponding relaxation frequencyf q5vq/2p comes from
a hydrodynamic mode analysis:vq5kq3/(4h) @21#. This
gives the time-dependent correlation function of the hei
fluctuationshq(t),

^hq~ t !h2q~0!&5^hq
2&e2vqt. ~7!

From this expression we deduce the variance of the fluc
tions,

^dh2~ t !&52(
q

^hq
2&~12e2vqt!. ~8!

Thus, using the time Fourier transform, one obtains

^dh2~v!&52(
q

^hq
2&

vq

v21vq
2 . ~9!
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The out-of-plane fluctuations power spectrum of a po
on the membrane is, therefore, as a function ofv52p f ,

^dh2~v!&5
kBT

kp E
0

1` dq

q3

vq

v21vq
2

5
kBT

4phv2 E
0

1` dq

11S kq3

4hv D 2 . ~10!

Note that lower and upper limits of integration are in fact
the order ofqmin;2p/Rv andqmax;2p/Rb , whereRv andRb
are, respectively, the vesicle and the bead radii. T
asymptotic result for largeRv and smallRb depends onk
and on the frequencyf as follows:

^dh2~ f !&>
kBT

24h2/3p5/3k21/3f 25/3}k21/3f 25/3. ~11!

For simple fluid membranes, this frequency dependence
responds to the time dependence oft2/3 @39#.

Equation~11! holds, in a first approximation, as long a
the velocity gradients in the fluid are negligible at the sc
of the bead, i.e., as long as the undulations wavelengtl
52p/q is large compared to the bead radiusRb . In the case
Rb@l, the viscous drag on the probe bead dominates
motion and the force due to the membrane undulation
negligible. Therefore, above a crossover frequencyf 0 ~esti-
mated from the conditionRb;l!, the out-of-plane power
spectrum should be the one for the simple Brownian mot
of the bead in the fluid

^dh2~ f !&>
kBT

16p3hRbf 2 for f @ f 05
kp2

hRb
3 . ~12!

Finally let us note that, in this approach, we consider
membrane as infinite and predict only asymptotic behav
for large vesicles and small probe beads. We used als
spherical-harmonic decomposition of the bending mo
@24#, which takes into account the spherical geometry of
system, to compute the exact power spectrum amplitudes
we shall see later, most of the experimental observations
still be understood by considering infinite and flat me
branes, which provide simple analytical scaling laws.

1. Fluid membranes

In Fig. 8 are shown, in the case of a fluid membrane,
frequency behaviors of the out-of-plane power spectrum
function of the bead radiusRb and the bending moduluskfluid
~independent of the frequency!. At low frequencies~below
f 0!, we predict from Eq.~11! a frequency-dependent beha
ior as f 25/3 ~referred as thebending regime!. In this regime,
the amplitude is independent of the bead size. At high
quencies~abovef 0!, we expect a regime independent of t
vesicle and scaling with the frequency asf 22 ~referred as the
Brownian regime!. From Eq.~12!, the crossover frequenc
f 0 depends onRb ( f 0}Rb

23) and kfluid ( f 0}kfluid). For a
given kfluid , an increasingRb yields a decreasingf 0 : the
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spectrum shows the Brownian regime over a larger f
quency range@Fig. 8~a!#. For a givenRb , an increase ofkfluid
induces an increase off 0 and overall a drop of the powe
spectrum amplitude in the bending regime@Fig. 8~b!#. Let us
point out the fact that, in this case, the power spectrum
pends slowly on kfluid as kfluid

21/3. Assuming kfluid

;10– 20kBT @15–17#, f 0 is of the order of a few kHz for a
1.5 mm bead and around 30 Hz for a 6mm bead. By varying
the bead size, it is thus possible to explore both regimes

2. Actin-coated membranes

We assume in this case that the bending modulus dep
on the frequency askACM; f z @see Eq.~4!#. Thus, Eq.~11!
leads to a different frequency behavior of the power sp
trum of the position fluctuations~Fig. 9!,

^dh2~ f !&}kACM
21/3 f 25/3} f 2@z/315/3# for f ! f 0 . ~13!

FIG. 8. Schematic dependence of the power spectrum of
out-of-plane position fluctuations in the case of a fluid membrane
a function~a! of the bead radiusRb, and~b! of the bending modulus
kfluid .

FIG. 9. Schematic dependence of the power spectrum of
out-of-plane position fluctuations in the case of an actin-coa
membrane@frequency-dependent bending moduluskACM( f ); f z]
as a function~a! of the bead radiusRb , and ~b! of the bending
moduluskACM . Below the crossover frequencyf 0 , the bending
regime is independent of the bead size. The power spectrum
pends on the frequency asf 2(51z)/3 and its amplitude varies a
1/@kACM( f )1/3#. Above f 0 , the bead motion is dominated by th
fluid viscosity and the power spectrum is the one for Brown
motion (; f 22). f 0 varies as 1/Rb

3 and is proportional tokACM( f 0).
4-7
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Therefore, the presence of the actin network has two effe
First, the amplitude of the out-of-plane power spectru
drops from the fluid case (^dh2&fluid) to the actin-coated cas
(^dh2&ACM),

^dh2&fluid

^dh2&ACM
'S kACM

kfluid
D 1/3

. ~14!

On the other hand, we expect different power-law expone
@25/3 and 2(5/31z/3)# for the power spectra measure
respectively, with fluid and actin-coated vesicles. Again, E
~13! holds up to a frequencyf 0 above which bulk viscous
effects on the bead dominate. However, it is difficult to gi
an estimate off 0 since, using Eq.~12!, f 0 is now a solution
of f 05kACM( f 0 )p2/hRb

3. Since the membrane is stiffe
with increasing frequencies, the regime dominated by b
viscosity should nevertheless happen at much higher
quencies~in comparison to the fluid case!, whatever the bead
size.

B. In-plane motion

1. Fluid membranes

As fluid membranes have no shear modulus, the in-pl
motion of the probe beads is controlled by the viscous dr
of the membrane and of the fluid. The drag coefficients
lated to the membrane surface viscosityhs (10210– 1029

Pa m s! @34,35# and to the solvent viscosityh (1023 Pa s!
are, respectively,zs54phs;1029– 1028 Pa m s andzv
56phRb;1028 Pa m s~for a bead of 1mm in diameter!.
The problem of the friction felt by a solid particle movin
under gravity along a vesicle contour has been studied
detail @34#. The authors have shown that the presence of
membrane increases the effective friction on the bead~with
respect to the bulk friction 6phRb!. When the bead remain
on the outside of the vesicle~which is the case in our exper
ments! and for a vesicle large compared to the bead s
~typically an aspect ratio larger than 7!, the friction increases
typically by about 25%. Therefore, we expect a power sp
trum which scales as for Brownian motion at high frequen
( f 22 ) and a small amplitude decrease~;25–30%! due to an
increased viscous shear.

2. Actin-coated membranes

We consider first the position fluctuations of a point
the membrane. The presence of the bead is then taken
account. Dynamical regimes distinct from those of the o
of-plane motion are expected. The membrane in-plane
namics is related to its two-dimensional shear viscoelastic
characterized by the complex modulusG2D(v)5G2D8 (v)
1 iG2D9 (v), where G2D8 and G2D9 are, respectively, the
pulsation-dependent elastic and loss moduli. The in-pl
displacementdu(v) of a point on the membrane is related
a perturbative forceF(v) in the membrane plane as follow
@7#:

^du~v!&5a~v!F~v!>
1

4pG2D~v!
F~v!, ~15!
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where the compliancea(v)5a8(v)1 ia9(v) is the com-
plex response function. Using the fluctuation-dissipat
theorem, the power spectrum of the in-plane fluctuation
computed from Eq.~15! @7,40#,

^du2~v!&>
2kBT

v
ImS 1

4pG2D~v! D
5

kBT

2pv

G2D9 ~v!

G2D8
2~v!1G2D9

2~v!
. ~16!

The power spectrum, as a function of the frequencyf
5v/2p, is thus

^du2~ f !&>
kBT

4p2f

G2D9 ~ f !

G2D8
2~ f !1G2D9

2~ f !
. ~17!

Since we assume thatG2D8 ( f ) and G2D9 ( f ) both scale at
high frequencies as f z and knowing that G2D9
5G2D8 tan(pz/2) @12#, the in-plane fluctuations power spe
trum scales with the frequency as

^du2~ f !&>
kBT

4p2f G2D9 ~ f !

tanS pz

2 D
11tan2S pz

2 D
>

kBT

8p2 sin~pz!
1

f G2D8 ~ f !
} f 2~11z!. ~18!

In the presence of the probe bead, Eq.~18! holds as long
as the bulk viscous forceFv acting on the bead (Fv
;zv2p f du) is smaller than the elastic forceFm due to the
membrane@Fm>4pG2D8 ( f )du#, wheredu is the in-plane
displacement. At high frequencies, the former dominates
the bead motion is Brownian (^x2( f )&; f 22). The crossover
frequency f 1 is estimated when the two forces are of t
same magnitude

f 1>
G2D8 ~ f 1 !

3phRb
. ~19!

At low frequencies, one predicts a regime dominated by
membrane fluctuations~referred as theviscoelastic regime!,
where the elastic shear modulusG2D8 ( f ) @see Eq.~18!# can
be measured. Abovef 1 , one reaches a Brownian regime
in the case of the out-of-plane motion. In Fig. 10 are plot
the theoretical power spectra of the bead thermally exc
position fluctuations as a function of the bead size and of
zero-frequency shear modulusG2D

0 . The power spectra de
pend on the frequency, respectively, asf 2(11z) and f 22 be-
low and above the crossover frequencyf 1 . Equation~19!
shows thatf 1 increases withG2D

0 : the stiffer the actin gel, the
larger in frequency the viscoelastic regime. On the ot
hand, f 1 scales as 1/Rb . By varying Rb , it may be thus
possible to explore the different fluctuation regimes.

To estimatef 1 , we first need an order of magnitude o
G2D

0 . To this purpose, the actin-coated membrane is
4-8
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formed tangentially by moving an attached bead using
optical trap. The position of the bead is measured
videomicroscopy for different trap stiffnesses. The bead
sition is defined by the equilibrium between the forces
erted by the optical trap@Ft5k(st2sb)# and the shear force
due to the membrane (Fm>4pG0sb) @37,38#, wherek is the
~varying! trap stiffness,st is the fixed trap position, andsb is
the bead position along the vesicle contour. Figure 11 sh
that Ft is effectively a linear function of the bead positio
andG2D

0 lies between 0.5 and 5mN/m ~which is of the same
order of magnitude as the shear modulus of the red blood
membrane@18–20#!. The large dispersion of the values is
consequence of the heterogeneity of the actin coating on

FIG. 10. Schematic dependence of the power spectrum of
in-plane position fluctuations in the case of an actin-coated m
brane@frequency-dependent shear modulusG2D8 ( f ); f z# as a func-
tion ~a! of the bead radiusRb , and~b! of the zero-frequency shea
modulusG2D

0 . Below the crossover frequencyf 1 , the viscoelastic
regime is independent of the bead size. The power spectrum
pends on the frequency asf 2(11z) and its amplitude varies a
1/G2D8 ( f ). Above f 1 , the bead motion is dominated by the flu
viscosity and the power spectrum is the one for Brownian mot
(; f 2). f 1 is proportional to 1/Rb and toG2D8 ( f 1).

FIG. 11. Estimation of the zero-frequency shear modulus of
actin-coated membrane. A bead attached to the membrane is
placed with an optical trap along the membrane contour. The b
position is then measured as the trap stiffness is lowered. The m
brane shear force is plotted as a function of the bead position
linear fit to the data gives an estimate of the shear modulusG2D

0 of
831027 N/m.
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vesicles. In bulk, the plateau modulusGp and the mesh size
j depend on the actin concentrationc as Gp;c2.5 @41# and
j;c20.5 @42#, which leads toGp;j25. Therefore, assuming
that G2D

0 behaves asGp , a small variation ofj ~by less than
a factor 2, which is possible from the fluorescence micr
copy images! corresponds to one magnitude order variati
for G2D

0 . A lower estimate off 1 is finally obtained by using
G2D

0 (;1 mN/m) in Eq. ~19!: f 1@200 Hz, for a 1mm bead.
Therefore, the viscoelastic regime should be accessible
least with small beads, in our experiments.

V. DISCUSSION

A. Fluid vesicles

Results obtained on fluid vesicles~Figs. 5 and 7! are in
good agreement with the theory. For the in-plane directi
as we mentioned before, we do not see the effect of
membrane on the power spectra, with respect to the b
case. This means that the shear viscous drag on the bead
the same magnitude order as the bulk viscous drag~or at
most one order smaller!, as expected@34,35#: we are not
sensitive with our technique~i.e., in the amplitude change! to
an increase of the shear viscosity of the order of 25%. T
power spectrum follows af 22 power law, which indicates
that the surface viscosity remains constant up to 1 kHz. T
Brownian behavior is observed independent of the bead
~from 1 mm up to 6mm in diameter!, as expected from the
model.

For the out-of-plane direction, the power spectra m
sured at high frequency with 1.5mm beads are best fitte
statistically with the exponent21.760.05, as mentioned be
fore ~see Fig. 5!. This is in agreement both with the fre
quency dependence of the theoretical power spect
( f 25/3 ) and with the estimate of the crossover frequen
f 0(;2 kHz), below which the bending regime dominated
the membrane undulations can be measured. Moreover
exact amplitude of the power spectrum is predicted in a g
approximation with the spherical-harmonic model and
bending moduluskfluid520kBT. These data will be shown
elsewhere.

A consequence of our model is the fact that the bend
regime can only be observed with small beads sincef 0 varies
rapidly with Rb as predicted by Eq.~12!: for 6, 3.1, and 1.5
mm beads,f 0 is expected to lie, respectively, around 30 H
250 Hz, and 2 kHz usingk;10– 20kBT @15–17#. For each
of these bead sizes, the out-of-plane power spectra in
presence of the fluid membrane and in the solution are c
pared in Fig. 12. The two power spectra are identical in
case of the 6mm bead„^x2( f )&; f 22

…, as expected since
f 0;30 Hz. As described above, a different regime is o
served with 1.5mm beads@^x2( f )&; f 21.7#. With 3.1 mm
beads, an intermediate situation is shown: the two spe
collapse around 600–700 Hz, which is explained by the
proximative predicted value off 0;200 Hz. The frequency
range is nevertheless too small to demonstrate clearly
two power-law dependences in this case.

To conclude, our model is in agreement with the expe
ments achieved with fluid vesicles and the known mecha
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FIG. 12. Power spectra of the out-of-plane position fluctuations of beads attached to fluid vesicles as a function of the bead dia
3.1, and 1.5mm from left to right. In each case, the power spectrum is compared to a calibration power spectrum of the bead tra
solution with the same trap stiffness.
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cal properties of fluid lipid membranes: a bending modu
of the order of 10 to 20kBT, no shear elastic modulus and
shear viscous drag of the order of a few 1029 Pa m s. The
frequency dependence of the power spectrum in the reg
dominated by the membrane bending undulations is cle
evidenced asf 25/3.

B. Actin-coated vesicles

1. Out-of-plane fluctuations

Out-of-plane power spectra obtained with small beads~1
and 1.5mm in diameter! show two main differences with
respect to fluid membranes. As mentioned before, the am
tude of the spectra is significantly lower~by a factor 361 at
500 Hz! and a power law of exponent21.8560.07 best fits
the data. This behavior illustrates, according to our mod
the viscoelastic character of the actin-coated membrane

The amplitude drop of the power spectrum in presence
the actin shell corresponds to an increase in the actin-co
membrane bending moduluskACM , which can be estimated
using Eq.~14! and assumingkfluid;10– 20kBT. It lies be-
tween 100 and 1000kBT, depending on the vesicles. Th
huge increase of the bending rigidity is not only the sum
the bending stiffness of the rigid filaments on the surfa
This would indeed yield typically a frequency independe
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bending moduluskACM;kBTLph/j2, which is at most
100kBT with Lp;10 mm, h,1 mm, andj.0.1mm.

Thus, the increase of the bending rigidity corresponds
the contrary to a frequency-dependent bending modulus
proposed in our model@see Eqs.~11! and~13!#. This feature
explains both the power-law dependence of the power sp
tra and the very large values of the bending modulus. Eq
tion ~13! leads to

kACM; f z with z50.5560.21. ~20!

To check the validity of our model, we study the evol
tion of the out-of-plane power spectrum as a function of
bead size~6, 3.1, and 1.5mm in diameter! ~Fig. 13!. In this
case, even with large beads, we do not observe a po
spectrum identical to the one measured in bulk. The pow
law exponents fitted to each of these curves are close
different from 22: 21.8260.03 ~6 mm bead!, 21.83
60.03 (3.1mm bead), and21.8860.01 (1.5mm bead). The
statistical study performed with these three sizes of be
leads to the conclusion that the power-law exponents can
be distinguished and that a common power law of expon
21.8560.07 best fits to all the data, whatever the bead s
As an example, five power spectra measured with all size
beads~1 to 6mm in diameter! are shown in Fig. 14: wherea
the bead
trapped

ad
FIG. 13. Power spectra of the out-of-plane position fluctuations of beads attached to actin-coated vesicles as a function of
diameter: 6, 3.1, and 1.5mm from left to right. In each case, the power spectrum is compared to a calibration spectrum of the bead
in solution with the same trap stiffness. Power laws of exponents, respectively,21.8260.03,21.8360.03, and21.8860.01 best fit the
data. These power laws are in agreement with a common exponent of21.8560.07 obtained from a statistical study over the different be
sizes.
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the amplitude of those curves varies by a factor of 2
60.25, they follow, whatever the bead size, the same po
law of exponent21.8560.05. This means that the crossov
frequencyf 0 between the bending regime and the Brown
regime has increased. From Eq.~12! @ f 0;kACM( f 0)#, this
result is consistent with a large increase of the bending s
ness. For example, with 6mm beads,f 0 ~estimated from the
collapse of the out-of-plane spectrum and the calibrat
spectrum! lies around a few kHz corresponding to a cons
tent bending modulus of the order of 1000kBT at those fre-
quencies. The bead size evolution of the power spectr
therefore in very good agreement with our conclusion t
the bending modulus is frequency dependent accordin
Eq. ~20!.

2. In-plane fluctuations

In-plane fluctuations power spectra measured with sm
beads~1 and 1.5mm! for actin-coated membranes show tw
features in comparison to the fluid membranes case. An
plitude drop~by a factor 2.560.5 with respect to the one o
fluid membranes! and a power-law dependence (21.85
60.07) different from Brownian motion (f 22). These two
changes show again the viscoelasticity of the membrane.
ing Eq.~18!, the frequency dependence of the shear modu
is directly computed from the in-plane fluctuations pow
spectrum,

G2D8 ~ f !>
kBT

8p2 sin~pz!
1

f ^du2~ f !&
. ~21!

The shear moduli obtained from three power spectra w
amplitudes of the same magnitude order are plotted in
15. Considering all experiments with 1 and 1.5mm beads~18
curves and 8 vesicles!, we obtain that the shear modulu
scales at high frequencies as

FIG. 14. Power spectra of the out-of-plane position fluctuatio
for actin-coated membranes obtained with bead sizes from 1
mm. Lines of slopes25/3 and22 are drawn, respectively, abov
and below the curves as guides to the eyes. An intermediate s
of 21.8560.05 is fitted to these five power spectra~the error bar is
statistically estimated for the five curves shown here!.
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G2D8 ~ f !; f z with z50.8560.07. ~22!

This provides a self-consistent estimate of 10 kHz for
crossover frequencyf 1 , above which bulk viscous effect
dominate @see Eq.~19!#. Moreover, the magnitude of th
shear modulus determined by this method is in good ag
ment with the estimate of the plateau modulus obtained
micromanipulation (G2D

0 ;0.5– 531026 N/m!. In both
cases, we observe a broad range of values~Fig. 16!, which
we relate to the variation of the network parameters from o
vesicle to the other. Nevertheless, the plateau freque
~above which the shear modulus is increasing! cannot be
determined accurately here, but its value lies below 100

s
6

pe

FIG. 15. Frequency dependence of the shear modulusG2D8 ( f ).
Using Eq.~22!, G2D8 ( f ) is deduced above the trap corner freque
cies from the power spectra of in-plane fluctuations of 1mm beads
attached to three different actin-coated vesicles.G2D8 ( f ) scales here
as f 0.8760.02. A line f 0.87 is drawn as a guide to the eyes.

FIG. 16. Power spectra of the in-plane position fluctuations o
mm beads attached to actin-coated vesicles. A calibration po
spectrum of a 1mm bead trapped in the fluid~dashed line! is shown
for comparison. A common power-law exponent of21.8760.02 is
measured for these three curves. Linesf 22 and f 21.87 are drawn as
guides to the eyes, respectively, above and below the power spe
4-11
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FIG. 17. Power spectra of in-plane position fluctuations of beads attached to actin-coated vesicles as a function of the bead di
3.1, and 1.5mm from left to right. In each case, the power spectrum is compared to a calibration power spectrum of the bead tra
solution with the same trap stiffness. Power laws are fitted to the data: the exponents are, respectively,22.0860.06, 21.9460.03, and
21.8760.02.
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To check if this model is valid, we also study the evol
tion of the in-plane power spectrum as a function of the b
radius. In Fig. 17 are shown the in-plane power spectra c
pared to the calibration power spectra for three bead size~6,
3.1, and 1.5mm!. The amplitude drop between each pair
spectra decreases with an increasing bead size. Consist
the power-law fitted to the data varies with the bead size:
measure exponents of22.0860.06 for the 6mm bead and
21.9460.03 for the 3.1mm one ~data shown in Fig. 17!,
21.9 for 2mm beads~data not shown!, whereas an exponen
of 21.8560.07 is measured for all experiments with 1 a
1.5 mm beads. By varying the bead size, we observe,
predicted in our model, a transition between the regi
where the bulk viscous drag dominates and the regime w
the in-plane shear viscoelasticity governs the bead mot
To understand why this transition is smooth, the hydro
namics around the probe bead needs to be more accur
described.

Finally, the self-assembled actin-coated membranes h
the following properties. The presence of the actin netw
induces the onset of a finite zero-frequency shear mod
G2D

0 ~of the order of 1mN/m! and a strong increase of th
bending modulus~a few 100kBT at 500 Hz!. Moreover, the
membrane is viscoelastic as proved by the frequency de
dence of the bending modulus and of the shear modulus

kACM~ f !; f 0.5560.21 and G2D8 ~ f !; f 0.8560.07. ~23!

These two scaling laws are not inconsistent with a comm
exponent of 0.75, as proposed in our model in relation to
bulk rheology of actin. In this approach, both moduli a
related in Eq. ~3! by a simple quantitative relation
kACM( f );@G2D8 ( f )h2#/3, with h of the order of 1mm. This
corresponds tokACM;100kBT for G2D

0 ;1 mN/m at zero fre-
quency, andkACM;1000kBT for G2D8 ;4 mN/m at 500 Hz
~see Fig. 15!. The difference between the two exponents m
be due, however, to a relation betweenkACM andG2D8 more
complicated than the linear one for a homogeneous plat
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VI. CONCLUSION

Whereas the elasticity of fluid membrane has been stud
extensively, less is known experimentally about viscoelas
solid, or polymerized membranes, because few example
this has been found@43,44#. Using biomolecules that posses
some original mechanical and rheological properties with
spect to physico-chemical systems, we have tailored, by s
assembling membranes and cytoskeletal polymers, c
plexes that exhibit rich dynamical properties and,
particular, viscoelasticity.

In order to characterize the viscoelasticity of the vesic
coated with actin filaments, we developed an experiment
combines micromanipulation with optical tweezers a
single-particle tracking. We show that mechanical expe
ments can be achieved on these micrometer-sized syst
The analysis of thermally excited position fluctuations
probe beads bound to the membranes is related to the
coelastic behavior of these membranes.

We obtain a description of the composite membrane t
is independent of its microscopic detail. The presence of
actin shell increases the bending modulus and induces
existence of a 2D shear modulus. Both moduli scale w
frequency with respective power-law exponents of 0.
60.21 and 0.8560.07. These exponents are consistent w
a common exponent of 0.75, which is expected from b
actin solution rheology. Whether the cell uses these dyna
cal properties of similar membranes is still an open quest
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