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Viscoelastic properties of actin-coated membranes
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In living cells, cytoskeletal filaments interact with the plasma membrane to form structures that play a key
role in cell shape and mechanical properties. To study the interaction between these basic components, we
designed aim vitro self-assembled network of actin filaments attached to the outer surface of giant unilamellar
vesicles. Optical tweezers and single-particle tracking experiments are used to study the rich dynamics of these
actin-coated membranéACM). We show that microrheology studies can be carried out on such an individual
microscopic object. The principle of the experiment consists in measuring the thermally excited position
fluctuations of a probe bead attached biochemically to the membrane. We propose a model that relates the
power spectrum of these thermal fluctuations to the viscoelastic properties of the membrane. The presence of
the actin network modifies strongly the membrane dynamics with respect to a fluid, lipid bilayer one. It induces
first a finite (w=0) two-dimensional2D) shear modulu§2D~0.5 to 5uN/m in the membrane plane. More-
over, the frequency dependence at high frequency of the shear mddByéf )~ 85097 and of the
bending modulus #xcy(f)~ 25502 demonstrate the viscoelastic behavior of the composite membrane.
These results are consistent with a common exponent of 0.75 for both moduli as expected from our model and
from prior measurements on actin solutions.
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[. INTRODUCTION recently observed in the Golgi apparafds], or of the red
blood cell membrangl]. This latter one consists of a two-

In plant and animal cells, membranes and cytoskeletadimensional(2D) network of spectrin tetramers linked to-
filaments interact strongly together and with other associategether by short actin filaments and attached to the membrane
proteins to form stable or dynamic structures involved in Ce||by protein complexes. Whereas pure fluid lipids membranes
shape, mechanical properties, and locomofibh In vitro  have no shear modulus and are characterized only by their
experiments are used to understand the interactions of thesglfrich bending elasticity14,15 (bending modulusc<gyig
basic components of living cells and their self-assembling-10—2&gT [15-17), the red blood cell membrane pos-
abilities. For example, microtubules and motors self-sesses a finite shear modulus of a feiN/m [18—20 and a
assemblen vitro into structures as asters similar to the onepending modulus of the order of 5 to I8, depending on
observedin vivo [2]; microtubules, polymerizing inside the measurement techniqugd—23.
vesicles, can deform them far from their equilibrium shape This example demonstrates that networks of stiff fila-
[3]; actin filaments form cortical-like structures while grow- ments attached to lipid membranes induce strong modifica-
ing inside vesicle$4]. tions of their mechanical properties. To understand qualita-

Cytoskeletal filaments are biopolymers that interact withtively and quantitatively how cytoskeletal networks modify
numerous proteins to achieve Complex functions in cells. Anthe mechanical properties of membranes, we tailored com-
other important property is their large persistence leigth posite structures obtained by self-assembly of actin fila-
wm for actin filamentg5,6], a few millimeters for microtu-  ments, stabilized in length, reticulated and biochemically at-
bules[6]) compared to the flexible polymers’ one: they aretached to the surface of giant vesicles. A quasi-two-
thus called semiflexible polymers. This feature is at the baSiaimensiona| cross-linked network is formed. This tailored
of the mechanical and rheological properties of actin fila-microstructure is composed of two components that have
ments solutions. Microrheology experiments on actin fila-peen widely studied in the past in isolati-11,14—17,2%
ments in bulk have shown a frequency dependence of thgesides an increase of the elastic moduli with respect to a
elastic and loss moduli7—9] in agreement with theoretical fluid lipid membrane, a more complex dynamics is expected:
expectation$10]. The moduliG;, and G5, increase at high  we have shown recently that this system exhibits viscoelas-
frequencies a$®’>. Below frequencies of order 1 HGj, ticity [25]. We present in this paper a complete description of
tends towards a nearly constdptateay value[9,11,13. our experiments as well as the results demonstrating the rich

Less is known about the mechanical properties of cytodynamics of these composite membranes.
skeletal filament and lipid membranes assemblies. Such To observe and measure these dynamical properties, we
composite structures are often obserwed/ivo, as, e.g., in  perform microrheology experiments on single vesicles, using
the case of actin cortical networks attached to the internamicrometer probe beads biochemically linked to the mem-
leaflet of the plasma membrarjé&], of spectrin networks branes. We manipulate and track the motion of these beads

with optical tweezers. Our results are compared to those ob-
tained with fluid vesicles, without the actin shell. The ther-
* Author to whom correspondence should be addressed. mally excited position fluctuations of the beads are measured
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over a large frequency rand&0 Hz up to a few kHgwith not shown, which indicates that there is no large scale seg-
nanometer scale resolution using a position detection setupegation between the two phospholipids.

The basic principle of the measurement is illustrated by the

following simple example. For a bead trapped in solution, B. Biotinylated actin filaments

the power spectrum of its thermally excited position fluctua- o

tions is a Lorentzian of parameters determined only by the Actin filaments are prepared by the standard method of
trap stiffnessk and the drag coefficient=6m 7R, of the Pardee and Spudidl80]. Monomeric actin is purified from

bead(radiusR,) in the solvent of shear viscosity [26], acetone powder, which has been extracted from chicken
muscle, and dissolved at 1.5 mg/ml in a low salt buffér
5 27kgT buffer: 2 mM Tris-HCI, pH 8.0, 0.5 mM ATRAdenosine
S(f)=(x*(f))= IR (1) 5'-triphosphatg 0.2 mM CaC}, 0.5 mM B-mercaptoethanol

and 0.01% NaBy). Acetone powder is kept at30°C and

When the bead is attached to a vesicle, the power spectrum &tin monomers can be stored in liquid nitrogen for at least
modified due to the forces exerted by the membrane on th@ne year. About 15% of the monomers are labeled with
bead. The membrane energy consists of a sum of a bendirfiotin-iodoacetamidéMolecular Probes Actin polymeriza-
term (with modulusx) [14,15 and, only in the case of actin- ton is induced by adding 50 mM KCI and increasing the
coated membranes, a term related to the in-plane viscoelad-TP concentration to 1 mMF buffen at an actin concentra-
ticity (2D complex modulus ,o= G +iG4p). In this case, fion of 0.1 mg/ml(~2.4 uM). The actin filaments are stabi-
the power spectrum depends kiry, x, andG,p. Therefore, lized ag;:unst depollymerlzatlon and fluorescently labeled with
changes in the spectrum before and after attachment to rQOdf‘m'”'pha||0'd|r(M0|eCU!ar Probesat 1 M and stored
vesicle are directly associated with the membrane mechanfit 4 °C for one week. The filaments are observed in fluores-
cal properties. Whereas the motion of large beads is dom{t€Nce mproscop@ctm concentration of 10 to 15 nMthe
nated by the bulk viscous drag, we show that, for smalfilaments’ length lies from lum to about 20um and the
enough beads, the fluctuations in the plane of the membrarf/€rage length is of the order of 1om.

are related to its in-plane shear viscoelasti¢ityn-plane”

fluctuationg and those perpendicular to the membrane plane, C. Actin-coated membranes(ACM )

called “undulations,” to its bending elasticity"“out-of- Actin-coated vesicles are obtained by mixing vesicles and
plane” fluctuations. We obtain by this technique a complete actin filaments in presence of streptaviditMolecular
description of the mechanical properties of the membran@ropes. This protein has four sites with high affinity for

over a large frequency range. biotin (in saline solutioh [31] and stable biochemical links
are expected to establish between biotinylated lipids and ac-
II. MATERIALS AND METHODS tin monomers as well as between monomers themselves.

Vesicles and filaments are diluted in a buffer containing 55
mM KCI, which induces also a 10% osmolarity difference
Vesicles are composed of a mixture of two phospholipidsbetween the inside and the outside of the vesicles. The os-
(purchased from Avanti Polar Lipigts 1,2-Dioleoyl-sn-  motic pressure difference makes the fl(ichcoatedl vesicles
Glycero-3-PhosphocholingDOPQ and 1,2-Dioleoyl-sn-  flaccid: thermal undulations of the membranes are clearly
Glycero-3-PhosphoethanolamihktCapBiotiny) (DOPE-  seen by videomicroscodyl 7,21]. Using an actin concentra-
B-Cap which has a biotin group attached to its hydrophilic tion of 15 nM, a streptavidin concentration of 0.02 nM and a
head. Both lipids have unsaturated fatty chains of 18 carlow concentration of vesicleg@ few vesicles in the field of
bons, whose fusion temperature is below 20°C; ( view of 100 um), vesicles covered by a network of fluores-
~—10°C) [27]. Vesicles are prepared by electroformation cent actin filaments are obtained after abtih incubation
[28]. A solution of phospholipids, containing 95% DOPC (Fig. 1). In the median plane, a thin and homogeneous actin
and 5% DOPE-B-Cap dissolved in chloroform, is spread orring is visualized whereas images taken on the top or bottom
two indium tin oxide (ITO) glass slides and dried under of vesicles show sometimes individual filaments. Streptavi-
vacuum. The slides are assembled face to face and held apdih concentration was chosen to optimize the actin density
with a Teflon spacefl mm thick. The swelling solution on the vesicles. Higher actin concentrations were not used
(100 mM sucrose, 2 mM Tris-HCI, pH 8.0, and 0.01% NaN since they lead to the formation of a thicker 3D gel.
is injected in the chamber held at 30 °C. An alternating field The structural parameters of actin networks cannot be pre-
of 1 Vpp and 10 Hz is applied between the two slides duringcisely determined from fluorescence images and may also
4 h. After swelling, the vesicles are diluted in a glucosedepend significantly on the vesicles. Nevertheless, we esti-
solution (105 mM glucose, 2 mM Tris-HCI, pH 8.0, and mate that the actin shell thicknekss below 1um and that
0.01% NaN) of same osmolarity as the sucrose one.the mesh siz& of the network should also lie around 0.1 to
Vesicles are then stored under argon atmosphere at 4 °C dut-um. Finally, it is not possible to estimate the reticulation
ing at most two weeks. Vesicles grown by this technique argate of the actin gels on the vesicles; let us only note that
giant (up to about 50—10@m in diametey and known to be  streptavidin is a much less concentrated on the vesicle sur-
mostly unilamellaf29]. By labeling the biotinylated vesicles face than actin.
with rhodamin-streptavidiiMolecular Probes we observe Two qualitative observations demonstrate the striking ef-
a homogeneous fluorescent contour of the vesiGlaages fects of the actin network on the membranes properties. The

A. Biotinylated vesicles
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FIG. 1. Actin-coated vesicle€l5 um in diametey observed at FIG. 2. The experimental setup is performed on a home-built
different planes by fluorescence microscopy. The medium planemicroscope. The infrared laséFopaz 1064 nm, Spectra Physiis
show high fluorescent contours of the vesicles, indicating that theyocused by the microscope objective of high numerical aperture
are homogeneously coated by an actin filaments shell. In inferior ofPlan Neofluar 108, N.A. 1.3, Zeis$which creates an optical trap

superior planes one can sometimes distinguish individual filamentsn the objective focal plane. The rapid deflection of the laser by the

) . . acousto-optic  modulators (AA.DTS.XY-250, A&A Opto-
first of these is a considerable decrease of the thermal undgjectronique allows us to locate one or two traps in the sample.

lations of the vesicles contour, which can be interpreted as fhe infrared light backscattered by the trapped bead is used to make

significant increase of the bending modulus. Second, whegn image of the bead on a two-quadrant photodi¢88096-02,

two beads are attached on a vesi@ee below; a displace-  Hamamatsy The difference between the two tensidieenverted

ment tangent to the membrane plane of one of t@m  from the currents through 10kresistancesis amplified by a low-

posed with an optical tweez@rsmiduces a symmetric motion noise amplifie( SR-560, Stanford Research Systemith a 30 kHz

of the second one. This indicates that the composite menbandwidth. The differential voltage is acquired with a Lab-PC 1200

brane has a shear modulus. acquisition board at 60 kHz and the power spectrum of the position
These self-assembled membranes are different from strufuctuations is computed using a software written under Labview

tures designed by other groups, such as actin filaments a¢National Instruments

sorbed on positively charged vesicl@2] or actin filaments . . D
growing inside vesicles and deforming thé4i. In particu- coated vesicles Vesicles are studied in a closed chamider

lar, in comparison to this latter case, the actin network is im thick) sealed with two glass coverslips coated with Bo-

r construct intrinsicall | he linid membran vm.Serum Albumin to reduce the sticking o_f vesicles anq
'?hue g%tisr:-gtﬁéptgvijigabgn%()sup ed to the lipid membrane byact|n to the glass. A probe bead held by optical tweezers is

bound to a vesiclél5 to 20um in diameter by moving the
microscope stage. Binding occurs in a few seconds. Actin-
coated vesicles attach weakly to the coverslips, which pre-
In the case of simple fluid membranes, thermal undulavents large scale motion of the vesicles. In the case of fluid
tions have an amplitude of the order of a few 100 nm and canesicles, a second beddhanipulated with a second optical
be measured by videomicroscop¥7]. In contrast, in the trap is attached to the vesicle at a position diametrically
presence of the actin network, thermal undulations are hardlgpposed to the first one and is strongly trapped to avoid
visible. To measure them as well as fluctuations in the memvesicle displacement. The position in time of the probe bead
brane plane, we have used a single-particle tracking methois measured in order to compare the power spectra of the
Single-particle tracking techniques have been used to medhermally excited position fluctuations of the bead before and
sure the viscoelastic properties of homogenous solutionafter attachment, at several laser powers.
with a high spatial accuracy and over a large frequency range The setup of optical tweezers and particle position detec-
[7]. tion is implemented on a home-built microscqjpég. 2). An
Beads coated with streptavidin are mixed with vesiclesnfrared laser beam is highly focused by a high numerical
just before the experiment. They can bind either to theaperture objective to trap dielectric particles. The optical trap
biotinylated phospholipidén the case of fluid vesiclg®rto  can be displaced in the focal plane of the objective by de-
the biotinylated actin monomers in the filamen(@ctin-  flecting the laser with acousto-optic modulators. Rapid

D. Micromanipulation and single-particle tracking

021904-3



E. HELFERet al. PHYSICAL REVIEW E 63 021904

S

Spectral Density (an/Hz)
Spectral Density (an/I-Iz)

% 300
10-2 2 250 2
2w s
& 150 N
g 100 e
10°F £ s /;//
S
0 0.05 0.1 0.15
. Laser power (mW) 10-4 . L ,
0= - - ; 10" 102 10°
10 10 10 10
Frequency (Hz)

Frequency (Hz)
FIG. 4. Power spectra of the out-of-plane position fluctuations

FIG. 3. Power spectra of the position fluctuations of 2u&  of a 1 um bead attached to an actin-coated vesidé um) and
beads trapped at two different laser powers. The curve with thérapped at different stiffnessésof 2.5, 6.5, and 9.4N/m, respec-
highest plateau value corresponds to the lowest stiffnkess tively, drawn as a dashed, thin solid, and thick solid lines. Above
=1.1X10"5N/m (f,~70Hz); the second one correspondskto around 200 Hzhighest corner frequengyhe three curves join and
=3.7X107° N/m (f,~200 H2. We show in the inset the depen- a power law of exponent 1.83+0.04 is fitted to the datéhe error
dence of the corner frequenéy as a function of the laser powBr  bar is statistically estimated with the three cuijves
for 1 um beads.

switching of the trap between different positions allows us tolgggzm_zr'ﬁg cf;lértr(])ert-hffed3tearl;(cani(rj|(?reaggege;irrg;neeitlen d ?/vai(t:r? the
create multiple tweezef83] when needed, i.e., in the case j q y P

of fluid vesicles only: in order to trap two beads, the IaserStlﬁneSS: in the inset in Fig. 3 is shown the linear depen-

beam is moved every 20@s from one location to the other dence off; as a fupcnon of the Iaser. power, in the case of 1
one. um beads. The high frequency regime does not depend on

The infrared light backscattered by the trapped bead i%he presence of the tweezers and a power law of exponent

used to form an image of the bead on a two-quadrant ph0t072i0.02, consistent with Brownian motion, is fitted to the

detector. Each quadrant delivers a current proportional to thgata abovd;. S . .
received light intensity. The currents are converted into volt- Once the calibration spectrum of the position fluctuations
ages, and their difference, amplified by a low noise amplifierOf the probe bgad has peen obtained, the bead is bound.to the
is proportional to the bead position in the trap. The bead*nembrane(ﬂwd or actln—coated_ or)gand the spectrum Is
position can be then measured with a high frequency ban Again computgd. The bead motion is measured in tWC,), direc-
width (up to a few kHz, once the calibration factoa (a ions, perpendicular to the membrane pléreut of plane”)

relation between measured voltage and actual po$ii®n and pa_rallel to the membran_e plagén plane”). As_the .
fluctuations are of small amplitude, out-of-plane motion will

determined. Depending on the orientation of the photodiodeb lated to th b bendi lasticit d in-pl
position fluctuations parallel or perpendicular to the mem- € related 1o the membrane bending efasticity and in-plane

displacement to its shear elasticity. In practice we use a trap
stiffness as low as possibl{é.~10 to 50 Hz: abovef, the
power spectrum does not dependlobut only on the mem-
brane properties and on the solvent viscosity. Figure 4 shows
From the Langevin equation of the motig(t) of a bead effectively that the fluctuations power spectra of a bead at-
of radiusR, in the harmonic potential of the optical twee- tached to an actin-coated vesicle are independent of the trap
zers, one deduces the power spectrum of the position flucstiffness above the highest corner frequency.
tuations of the trapped be&s?(f )) [26] which is a Lorent- Spectra before and after attachment to the vesicles are
zian[see Eq(1)]. The corner frequencf,=k/(27¢) of the  compared. In particular, the spectrum amplitude and the
spectrum depends on the trap stiffness which varies linearlpower law fitted to the data are analyzed. Power laws are
with the laser power. Belowii,, the power spectrum is con- fitted to the experimental spectra between 50—100(ikiz
stant(equal to a plateau valug,=2ZkgT/k?). Above f, posed byf.) and about 1 kHz in the case of fluid membranes
the spectral density of the position fluctuations is that of aand 4 kHz for actin-coated ones. The limit of 1 kHz is im-
Brownian particle ¢ f~2). Both the spring constant of the posed by the time sharing of the laser between two locations
trap k (N/m), and the calibration factor of the tracking setup in the case of fluid vesicles. The second limit corresponds to
a (V/nm), are independently determined from the poweran unexplained and rapid crossover in the fluctuations power
spectrum of the bead motidi26]. In Fig. 3 are shown the spectrum of a trapped bead towards a new regime
power spectra of two beads of same s{2e8 um in diam- (~f729), which limits the frequency range well above the
etep trapped with two different stiffnesses. By applying a noise level[7]. Power spectra are therefore studied over a

brane plane are measured.

E. Principle of calibration and measurement

021904-4



VISCOELASTIC PROPERTIES OF ACTIN-COATED MEMBRANES PHYSICAL REVIEW &3 021904

10° . . 10° : . .
S .
) o 10k N 1
= ! = N
NE 10 E NE . (NN
L VAL, i
E g 10 R\
Q 3} \\"‘*d.
2 10 5 2 10 iy, i
L @ )
_ _ =]
= trapped bead = 1021 = — trapped bead ]
E " —fluid membrane = — fluid membrane
-3 107 £ 3 —actin coated membrane
Z & 107}
107 : . 10™ : : '
10’ 10° 10’ 10’ 10° 10°
Frequency (Hz) Frequency (Hz)
FIG. 5. Power spectrum of the out-of-plane fluctuatigtisck FIG. 6. Power spectra of the out-of-plane fluctuations ofdn®

solid line) of a 1.5um bead attached to a fluid vesid¢tE8 um) and beads trapped in solutiofdashed ling attached to a fluid mem-
trapped with a small stiffnesk&2x 1078 N/m). It is compared to  brane (thin solid line and attached to an actin-coated membrane
the calibration power spectrum measured for the same bead trappéthick solid line. A power law of exponent-1.88+0.01 best fits
in solution with the same stiffnegthin solid ling. Above the trap  the last curve. Lines of slopes2, —1.68, and—1.88 are drawn as
corner frequency(~20 Hz), power laws of exponents-1.68  guides to the eyes, from the top to the bottom of the picture.
+0.03 (fluid membrangand —2.01+ 0.02 (trapped beadare best
fits to these data. Lines of slopesl..68 and—2 are drawn as guides  (fluid vesicle and—2=0.02(trapped bead The error bar of
to the eyes, respectively, below and above the curves. 0.05 (Wthh is indeed Iarger than the individual error mea-
sured for each spectrynis statistically estimated from 12
frequency range of one to two decades, which corresponds @irves obtained with 4 vesicles and 1 or L& beads.
two to four decades in amplitude, making it possible to dis- In the case of actin-coated membranes, a larger decrease
tinguish between quite close power-law exponents. Let u®f the power spectrum amplitude is observed: we show in
note that an error bar on the power-law exponent is comFig. 6 the two previous spectra and the one obtained for a 1.5
puted for each spectrum using a least-square-fit mefthed M bead attached to an actin-coated vesicle and trapped with
Levenberg-Marquardt algorithmThis error is mentioned in the same stiffness. The out-of-plane power spectrum ampli-
the captions of figures showing individual spectra. It is, nevtude drops by a factor 3.Bneasured at 500 Hibetween the
ertheless, smaller than the statistical error obtained from theases of the fluid membrane and of the actin-coated one. For
study of a few tens of vesicles. This statistical error is used ithe composite membrane, the power-law exponent is
the text. —1.88+0.01. Considering all the experiments with actin-
coated vesicleg24 curves and 11 vesicleswe measured
. RESULTS first that the amplitude decreases by a factaeri3in com-
parison to the fluid casét 500 H2. The power-law expo-
We present results obtained with beads of 1 andubiin - nent fitted to the data is statisticalty1.85+0.07 and is dif-
diameter. Out-of-plane and in-plane fluctuations are sepgerent from the one obtained with fluid vesicles-{.7
rately analyzed. In each case, the power spectra of the posi-0.05). Note that these close exponents can be distin-
tion fluctuations of beads bound to fluid and aCtin'Coateruished since power laws are measured over a frequency
membranes are shown and compared to a calibration spefange of 1 to 2 decades, corresponding to 2 to 4 decades in
trum (trapped bead amplitude.

A. Out-of-plane fluctuations B. In-plane fluctuations

Figure 5 shows the power spectrum obtained for the out- We show in Fig. 7 the power spectra of the in-plane fluc-
of-plane motion of a 1.5um bead attached to a fluid vesicle tuations of 1um beads attached to a fluid and to an actin-
and weakly trappedk=2x10"®N/m) and the one mea- coated vesicle in comparison to the one measured for a
sured for the same bead in the trap of same stiffness beforgeakly trapped bead. One notes immediately that the pres-
attachment. The amplitude of the spectrum is clearly smalleence of the fluid membrane does not affect the motion of the
in the presence of the membrane. Power laws are fitted to theapped bead. By fitting power laws to these data, we obtain
data above the trap corner frequency. We measure for thosgmilar exponents of- 1.98+ 0.02(bead attached to the fluid
two curves two different exponents ef1.68+0.03 (out-of-  membrangand —1.97+ 0.02 (trapped bead This result was
plane power spectruymand —2.01+0.02 (calibration spec- observed for all in-plane measurements performed with fluid
trum). In all the experiments achieved with fluid membranesmembranes.
the same spectrum amplitude is measured. The average In the presence of the actin network, the power spectrum
power-law exponents measured statistically are.7=0.05 s clearly shifted towards smaller amplitude, by a factor 2 at
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107 . . . k=G"h?/3. 3

i Therefore, we also assume that the bending modulus of
actin-coated vesicles depends on the frequency with the same
] power law asGp,

- kacm(f)~Tf2 (4)

Using this hypothesis, we compute the thermally excited
position fluctuations of the probe bead on which both the
membrane and the surrounding fluid exert forces. Since fluc-
tuations are thermally excited, their amplitude is small: as a
consequence, we consider that the fluctuations in the plane of
the membrane and perpendicular to it are not coupled. They
are related, respectively, to the in-plane viscoelasticity and to
Frequency (Hz) the bending elasticity. For both directions, we first compute
the fluctuations power spectrum of a point on the membrane
and consider then the perturbation due to the bead.

— — trapped bead
— fluid membrane
—actin coated membrane

Spectral Density (nm2/Hz)

10'4 i Il 1
10! 10° 10°

FIG. 7. Power spectra of the in-plane fluctuations gfrh beads
trapped in solutioridashed ling attached to a fluid membraghin
solid line), and attached to an actin-coated membréhik solid )
line). The data are best fitted by power laws of respective exponents A. Out-of-plane motion
—1.97+0.02,-1.98+0.02, and—1.87+0.02. Lines of slopes-2 The out-of-plane fluctuations of a point on a flat and in-
and —1.87 are, respectively, drawn above and below the curves agnjte membrane are first considered. As the membrane sur-
guides to the eyes. face tensiony is negligible[15], the thermal undulations of

the membrane are dominated by the Helfrich bending energy
500 Hz. A power law of exponent 1.870.02 is best fitted [14,15,2],
to the curve. In all the measurements with actin-coated

vesicles(18 curves and 8 vesiclgshe amplitude of the in- . 22
plane power spectrum can vary by a factor of 255, de- =2 f «[V=h(M)]"ds, ®)
pending on the vesicle. Finally, an exponent ©fl.85
+0.07 is measured. wherex is the bending modulug]?h is the mean curvature,
and h(r) is the membrane transverse displacement at the
IV. MODEL coordinater of a planar reference state. Let the spatial Fou-

rier transformation bdﬂ(r):theiq'r, whereh, is the fluc-
We present in this section a model whose aim is to extuations amplitude of a mode in the Fourier space. One
plain the variation of amplitudes and of power-law expo-obtains
nents observed in the previous experiments. For fluid
vesicles, the energy is solely characterized by bending
[14,15 (bending modulug g~ 10— 2KgT [15-17). There Ep=2: KLZ% q4hqh—q' (6)
is no shear modulus in this case and membrane shear viscosi-
ties 75 are typically of the order of 10" to a few whereL? is the membrane area. Using the energy equiparti-
10 ?Pams[34,35. In presence of the actin network, we tion theorem, one deduces from E6) the fluctuations mean
describe the membrane as a homogeneous medium whosguare amplitude of the mode(|hy|%) =ksT/(xL%q*). The
energy is the sum of two terms: A bending term, as in thecorresponding relaxation frequenéy=w/2m comes from
fluid case, but with a different bending moduldgey , anda g hydrodynamic mode ana|ysis'wq: Kq3/(477) [21]. This
term related to in-plane viscoelasticityiscoelastic complex gives the time-dependent correlation function of the height
modulus G p=Gop+i1G3p). Moreover, we assume that the fluctuationshg(t),
moduli G5, and G5 scale with frequency
(hg(th_q(0))=(hZ)e™ “d", )

Gop(f)~Gop(f )~ 1%, 2 From this expression we deduce the variance of the fluctua-
tions,
as in the case for bulk actin solutiofG3,~ G35~ f?, with
z~0.75 [7-10Q]. This scaling is related to the semiflexible <6h2(t)>=22 <h2>(1_ewqt). (8)
character of the actin flaments and to the relaxation of bend- q 4
ing modes along theifl0,36]. At low frequency, we assume

that G, tends towards a plateau Va"@o- Thus, using the time Fourier transform, one obtains
On the other hand, for a homogeneous plate of thickness

h, the elastic shear’) and bending k) moduli are related sh2 -2 h2 Wq 9

by a simple geometric law37,38: {h*(w)) Eq (hg) w’+ wé' ©
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The out-of-plane fluctuations power spectrum of a point )R, >R’>R, DESESH
on the membrane is, therefore, as a functionwef 27 f,

kBT +oe dq (l)q

N
g
E
s
2 __B e e =
<6h (w)) KT Jo q3 w2+w§ %’
5
keT (+= dg =
R PrERTE (10 £

ne-Jo 1+<i g L

47]&) @ o=t

Frequency (Hz)

Note that lower and upper limits of integration are in fact of

the order ofqr_mn~27r/Rv andq_max~27r/Rb, whereR, a”d!?b FIG. 8. Schematic dependence of the power spectrum of the
are, respectively, the vesicle and the bead radii. Thgyt-of-plane position fluctuations in the case of a fluid membrane as

asymptotic result for larg®, and smallR, depends on« 3 function(a) of the bead radiuR,, and(b) of the bending modulus

and on the frequencias follows: Kiluid -

~13§ 503 ~13¢-53  (17)  spectrum shows the Brownian regime over a larger fre-
guency rangéFig. 8@)]. For a giverR,,, an increase okiq

) _ ) induces an increase df, and overall a drop of the power

For simple fluid membranes, this frequency dependence CO&pectrum amplitude in the bending regififég. 8(b)]. Let us

responds to the time dependencet®t[39]. point out the fact that, in this case, the power spectrum de-
Equation(11) holds, in a first approximation, as long as pends slowly on kuig as «pt2. Assuming kg

the velocity gradients in the fluid are negligible at the scale_ 2kgT [15—17, f, is of the order of a few kHz for a
of the bead, i.e., as long as the undulations waveleigth 1.5 um bead and around 30 Hz for an bead. By varying

—2m/q is large compared to the bead radRis. In the case o e size, it is thus possible to explore both regimes.
Rp>\, the viscous drag on the probe bead dominates its

motion and the force due to the membrane undulations is

negligible. Therefore, above a crossover frequefycyesti-

mated from the conditiorR,~\), the out-of-plane power We assume in this case that the bending modulus depends

spectrum should be the one for the simple Brownian motioron the frequency asacy~ f* [see Eq.(4)]. Thus, Eq.(11)

of the bead in the fluid leads to a different frequency behavior of the power spec-
trum of the position fluctuationg=ig. 9),

B
<5h2(f)>EW3W—5/§K

2. Actin-coated membranes

keT 2
(Sh2(f))y=—F—— for f>fp=—3 (12
167° 7Ry Ry (Sh2(F))or ka3 £ -5Bucf (23453 for f<fy. (13)
Finally let us note that, in this approach, we consider the . ,
membrane as infinite and predict only asymptotic behaviors AR, >R, >R, b) &ie’ (N> Kycal)
for large vesicles and small probe beads. We used also g
spherical-harmonic decomposition of the bending modesz o (143 somuncx

[24], which takes into account the spherical geometry of the &
system, to compute the exact power spectrum amplitudes. Af;
we shall see later, most of the experimental observations carz
still be understood by considering infinite and flat mem-
branes, which provide simple analytical scaling laws.

1. Fluid membranes

Spectral Den

fo—Ffv—bh

In Fig. 8 are shown, in the case of a fluid membrane, the
frequency behaviors of the out-of-plane power spectrum as & Frequency (Hz)
function of the bead radiug, and the bending modulugq
(independent of the frequencyAt low frequencies(below
fo), we predict from Eq(11) a frequency-dependent behav-
ior asf %3 (referred as théending regimg In this regime,
the amplitude is independent of the bead size. At high fre
quepues(abovefo), W.e expect a reg'm%mdependem of the regime is independent of the bead size. The power spectrum de-
vesicle and scaling with the frequencyfas’ (referred as the pends on the frequency ds 572 and its amplitude varies as
Brownian regime. From Eq.(12), the crossover frequency 17 x,.,,(f)¥%]. Above fo, the bead motion is dominated by the
fo depends orRy (fo*Ry°) and kg (fo* kaug). FOr @  fluid viscosity and the power spectrum is the one for Brownian
given kyq.q, an increasingRy yields a decreasindy: the  motion (~f~2). f, varies as R and is proportional tacacy(fo).

FIG. 9. Schematic dependence of the power spectrum of the
out-of-plane position fluctuations in the case of an actin-coated
membrane[frequency-dependent bending modulkgey(f )~ 7]
as a function(a) of the bead radiu®R,, and (b) of the bending
modulus kacy . Below the crossover frequendy, the bending
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Therefore, the presence of the actin network has two effectsvhere the compliance(w)=a’'(w)+ia"(w) is the com-
First, the amplitude of the out-of-plane power spectrumplex response function. Using the fluctuation-dissipation
drops from the fluid case( 6h?)q.,i¢) to the actin-coated case theorem, the power spectrum of the in-plane fluctuations is

((8h?) acw), computed from Eq(15) [7,40),
%) us 2k T 1
<5h2>flwd %<KACM) . (14) <5u2(a))>5 B |m( )
(8h%) acm Kfluid (0] 47Gop(w)
On the other hand, we expect different power-law exponents _ kgT 20( @) (16)
[-5/3 and — (5/3+2/3)] for the power spectra measured, 27w Gé%(w)+(3§% )’

respectively, with fluid and actin-coated vesicles. Again, Eq.
(13) holds up to a frequenc§, above which bulk viscous The power spectrum, as a function of the frequerfcy
effects on the bead dominate. However, it is difficult to give = @/2m, is thus
an estimate ofy since, using Eq(12), f, is now a solution .
of fo=kacm(fo) 72/ 7R3, Since the membrane is stiffer 2 = KeT 2n(f)
. . . b . . . <6U (f )>_ 2 12 n2 . (17)
with increasing frequencies, the regime dominated by bulk 4t Gop(f)+Go5(f)
viscosity should nevertheless happen at much higher fre-
quenciegin comparison to the fluid cagevhatever the bead ~ Since we assume th&@(f) and G5p(f) both scale at

size. high frequencies as f* and knowing that Gjj
=G ptan(@z/2) [12], the in-plane fluctuations power spec-
B. In-plane motion trum scales with the frequency as
1. Fluid membranes r(rrz)
As fluid membranes have no shear modulus, the in-plane s e keT N2

motion of the probe beads is controlled by the viscous drags (Su™(f))= 4t Ghy(f) Tz

of the membrane and of the fluid. The drag coefficients re- 1+tan2(7>

lated to the membrane surface viscosijy (10 1°-10°

Pam$ [34,35 and to the solvent viscosityy (102 Pa$ keT s

are, respectively,l;=4m7~10°-108 Pams and{, =g 2sin(7z) m“f 2 (18

=677R,~10 8 Pams(for a bead of 1um in diametey.

The prOblem of the friction felt by a solid partiCle mOVing In the presence of the probe bead, EtB) holds as |0ng

under gravity along a vesicle contour has been studied iRs the bulk viscous forcé=, acting on the bead K|
detail [34]. The authors have shown that the presence of the. £, 2wt éu) is smaller than the elastic forde,, due to the

membrane increases the effective friction on the bgdth membrane F,,=47Gj(f)su], where su is the in-plane

respect to the bulk friction 7Ry,). When the bead remains gisplacement. At high frequencies, the former dominates and
on the outside of the vesiclgvhich is the case in our experi- tha pead motion is Browniar(X3(f ))~f ~2). The crossover

ments and for a vesicle large compared to the bead sizgrequencyf, is estimated when the two forces are of the
(typically an aspect ratio larger than, The friction increases ¢5me magnitude

typically by about 25%. Therefore, we expect a power spec-
trum which scales as for Brownian motion at high frequency Gho(f1)

(f~2) and a small amplitude decrease25—-30% due to an 1= 3R
increased viscous shear. o

(19

At low frequencies, one predicts a regime dominated by the
membrane fluctuationgeferred as theviscoelastic regime

We consider first the position fluctuations of a point onwhere the elastic shear modulGs(f ) [see Eq.(18)] can
the membrane. The presence of the bead is then taken ine measured. Above,, one reaches a Brownian regime as
account. Dynamical regimes distinct from those of the outdin the case of the out-of-plane motion. In Fig. 10 are plotted
of-plane motion are expected. The membrane in-plane dythe theoretical power spectra of the bead thermally excited
namics is related to its two-dimensional shear viscoelasticityposition fluctuations as a function of the bead size and of the
characterized by the complex modul@p(w)=Gyn(w)  zero-frequency shear modul@),. The power spectra de-
+iGjp(w), where Gy and Gy, are, respectively, the pend on the frequency, respectively,fas'*? andf~?2 be-
pulsation-dependent elastic and loss moduli. The in-planéow and above the crossover frequenty. Equation(19)
displacemensu(w) of a point on the membrane is related to shows thaf , increases witt 5y, the stiffer the actin gel, the
a perturbative forc& (w) in the membrane plane as follows |arger in frequency the viscoelastic regime. On the other
[7]: hand, f, scales as H,. By varying R,, it may be thus
possible to explore the different fluctuation regimes.

To estimatef,, we first need an order of magnitude of
GJo. To this purpose, the actin-coated membrane is de-

2. Actin-coated membranes

1
<5U(w)>:a(w)|:(w)%m|:(w), (15
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a) R’ >R, >R, b)G’,>G’, vesicles. In bulk, the plateau modulGs, and the mesh size
£ depend on the actin concentratioras G,~c?° [41] and
é~c~2°[42], which leads t@G,~ £ °. Therefore, assuming
N that G, behaves a&,, a small variation of (by less than
| a factor 2, which is possible from the fluorescence micros-
copy imageks corresponds to one magnitude order variation
for GgD. A lower estimate off; is finally obtained by using
Go5(~1 uN/m) in Eq.(19): f;>200Hz, for a 1um bead.
— Therefore, the viscoelastic regime should be accessible, at

Fefeh ha—ha least with small beads, in our experiments.
Frequency (Hz)

Spectral Density (nm2/Hz)

FIG. 10. Schematic dependence of the power spectrum of the
in-plane position fluctuations in the case of an actin-coated mem-
brane[frequency-dependent shear modulii,(f )~ f] as a func- A. Fluid vesicles
tion (a) of the bead radiuR,,, and(b) of the zero-frequency shear Results obtained on fluid vesicléBigs. 5 and ¥ are in

0 . .
moQqu;G?Da Be|0\év trle ?r&ss%verdfrgquer_}crf]x, the V'Scoel"ft'c q ood agreement with the theory. For the in-plane direction,
regime 15 Incependen. © ,e(lfz? S1ze. 1Ne POwWer Spectium A3s we mentioned before, we do not see the effect of the
pends on the frequency as and its amplitude varies as

1/G,(f ). Above f,, the bead motion is dominated by the fluid MEMPrane on the power spectra, with respect to the bulk

viscosity and the power spectrum is the one for Brownian motionﬁ?se' This meani tgat thg sheart\rl]lscgulidr.ag on the be?d is of
(~f?). f; is proportional to 1R, and toGjp(f;). e same magnitude order as the bulk viscous doaga

most one order smallgras expected34,35: we are not

- ; - itive with our techniqu@.e., in the amplitude changé
formed tangentially by moving an attached bead using anens! i .
optical trap. The position of the bead is measured byan increase of the shear viscosity of the order of 25%. The

videomicroscopy for different trap stiffnesses. The bead poPPWe' spectrum f_°”°W_S & power law, which indicates .
by P P that the surface viscosity remains constant up to 1 kHz. This

sition is defined by the equilibrium between the forces ex_Brownian behavior is observed independent of the bead size
erted by the optical trapF,=k(s, ~sp)] and the shear force (from 1 um up to 6 um in diamete), as expected from the

due to the membrand=(,=4mGs) [37,38, wherek is the model.

(varying) trap stiffnesss; is the fixed trap position, ang}, is L
the bead position along the vesicle contour. Figure 11 showgur';%r ;?iioﬁt;fef'pdigi d\;\r/ﬁﬁ“in,n:hsegg;vzrresgzzttr?itgga_
that F, is effectively a linear function of the bead position 9 q Y A

anngD lies between 0.5 and GN/m (which is of the same statistically with the exponent 1.7+ 0.05, as mentioned be-

) re (see Fig. % This is in agreement both with the fre-
order of magnitude as the shear modulus of the red blood Celruency dependence of the theoretical power spectrum

Consequence of the heterogenety of he actn coating on ], ~~), 219 With the estimate of the crossover frequercy
q 9 y 9 o(~2 kHz), below which the bending regime dominated by

the membrane undulations can be measured. Moreover, the
exact amplitude of the power spectrum is predicted in a good
approximation with the spherical-harmonic model and a
bending modulus¢;,q=20kgT. These data will be shown
elsewhere.
A consequence of our model is the fact that the bending
regime can only be observed with small beads siigoearies
> rapidly with R, as predicted by Eq12): for 6, 3.1, and 1.5
um beadsf is expected to lie, respectively, around 30 Hz,
—Z 250 Hz, and 2 kHz using~10-2&kgT [15-17. For each
P . .
: 1 of these bead sizes, the out—of—plan_e power spectra in the
e S presence of the fluid membrane and in the solution are com-
i pared in Fig. 12. The two power spectra are identical in the
01 0 ol 02 03 04 05 06 07 case of the 6um bead((x*(f))~f~?), as expected since
fo~30 Hz. As described above, a different regime is ob-
served with 1.5um beads[(x?(f))~f~17]. With 3.1 um
FIG. 11. Estimation of the zero-frequency shear modulus of th?€@ds, an intermediate situation is shown: the two spectra
actin-coated membrane. A bead attached to the membrane is dig/lapse around 600700 Hz, which is explained by the ap-
placed with an optical trap along the membrane contour. The beaBroXimative predicted value df,~200 Hz. The frequency
position is then measured as the trap stiffness is lowered. The meni@ange is nevertheless too small to demonstrate clearly the
brane shear force is plotted as a function of the bead position. AW0 power-law dependences in this case.
linear fit to the data gives an estimate of the shear modafysof To conclude, our model is in agreement with the experi-
8x10 7" N/m. ments achieved with fluid vesicles and the known mechani-

V. DISCUSSION

2 T T T T T T

1.5} b

0.5

Elastic shearing force (pN)

Bead position (um)
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Spectral Density (nm’/Hz)

Frequency (Hz)

FIG. 12. Power spectra of the out-of-plane position fluctuations of beads attached to fluid vesicles as a function of the bead diameter: 6,
3.1, and 1.5um from left to right. In each case, the power spectrum is compared to a calibration power spectrum of the bead trapped in
solution with the same trap stiffness.

cal properties of fluid lipid membranes: a bending modulusyending mOdU|USKAcm~kBTLph/§2, which is at most

of the order of 10 to 2T, no shear elastic modulus and a 10kgT with Lp~10 um, h<1pum, and&>0.1um.

shear viscous drag of the order of a few 20Pams. The Thus, the increase of the bending rigidity corresponds on
frequency dependence of the power spectrum in the regimgie contrary to a frequency-dependent bending modulus, as
dominated by the membrane bending undulations is clearlgroposed in our mod¢kee Eqs(11) and(13)]. This feature

evidenced ag 5", explains both the power-law dependence of the power spec-
tra and the very large values of the bending modulus. Equa-
B. Actin-coated vesicles tion (13) leads to
1. Out-of-plane fluctuations kaem~f?  with z=0.55+0.21. (20)

Out-of-plane power spectra obtained with small bedds
and 1.5um in diameter show two main differences with To check the validity of our model, we study the evolu-
respect to fluid membranes. As mentioned before, the ampltion of the out-of-plane power spectrum as a function of the
tude of the spectra is significantly lowésy a factor 3t1 at  bead sizg6, 3.1, and 1.5um in diametey (Fig. 13. In this
500 H2 and a power law of exponent1.85+0.07 best fits case, even with large beads, we do not observe a power
the data. This behavior illustrates, according to our modelspectrum identical to the one measured in bulk. The power-
the viscoelastic character of the actin-coated membrane. law exponents fitted to each of these curves are close and
The amplitude drop of the power spectrum in presence oflifferent from —2: —1.82+0.03 (6 um bead, —1.83
the actin shell corresponds to an increase in the actin-coatetd0.03 (3.1um bead), and-1.88+0.01 (1.5um bead). The
membrane bending moduluscy, Which can be estimated statistical study performed with these three sizes of beads
using Eq.(14) and assumingc,iq~10—2&KgT. It lies be-  leads to the conclusion that the power-law exponents cannot
tween 100 and 10@@T, depending on the vesicles. This be distinguished and that a common power law of exponent
huge increase of the bending rigidity is not only the sum of—1.85+0.07 best fits to all the data, whatever the bead size.
the bending stiffness of the rigid filaments on the surfaceAs an example, five power spectra measured with all sizes of
This would indeed yield typically a frequency independentbeadq1 to 6 um in diameter are shown in Fig. 14: whereas

Spectral Density (nm*/Hz)

Frequency (Hz)

FIG. 13. Power spectra of the out-of-plane position fluctuations of beads attached to actin-coated vesicles as a function of the bead
diameter: 6, 3.1, and 1,6m from left to right. In each case, the power spectrum is compared to a calibration spectrum of the bead trapped
in solution with the same trap stiffness. Power laws of exponents, respectivél$2+0.03, —1.83+0.03, and—1.88+0.01 best fit the
data. These power laws are in agreement with a common exponerit.86+ 0.07 obtained from a statistical study over the different bead
sizes.
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—_
(=1
n

Spectral Density (nm2/I-Iz)
Elastic Shear Modulus (N/m)

Frequency (Hz)
Frequency (Hz)

N _ FIG. 15. Frequency dependence of the shear modBlys$f ).
FIG. 14. Power spectra of the out-of-plane position fluctuationsUsing Eq.(22), G4(f ) is deduced above the trap corner frequen-
for actin-coated membranes obtained with bead sizes from 1 to @ies from the power spectra of in-plane fluctuations gfrht beads
um. Lines of slopes-5/3 and—2 are drawn, respectively, above attached to three different actin-coated vesidls,(f ) scales here
and below the curves as guides to the eyes. An intermediate slopgs 087092 A |ine £987is drawn as a guide to the eyes.
of —1.85+0.05 is fitted to these five power specftiae error bar is
statistically estimated for the five curves shown here , .
Gyp(f)~f* with z=0.85£0.07. (22

the amplitude of those curves varies by a factor of 2.75

+0.25, they follow, wiatever the bead size, the same powefis nrovides a self-consistent estimate of 10 kHz for the
law of exponent-1.85+0.05. This means that the crossover ..ocsqver frequency,, above which bulk viscous effects

frequencyf, between the bending regime and the Browma”dominate[see Eq.(19)]. Moreover, the magnitude of the

regime has increased. From HQ2) [fo~xacm(fo)l, thiS  ghear modulus determined by this method is in good agree-
result is consistent with a large increase of the bending stiffr ant with the estimate of the plateau modulus obtained by

ness. For example, with Bm beadsf, (estimated from the micromanipulation G(Z)DNO'S_SX 10 N/m). In both

collapse of the out-of-plane spectrum and the callbratlorbases we observe a broad range of valii@s. 16, which
specérurr)(uj_lles ar(zjur;d a ievr\}/ kszcorrfesipoTTdmg ;[]0 a Cfon5|s-we relate to the variation of the network parameters from one
tent ending modulus o the or ero 0Q0 at those fre- vesicle to the other. Nevertheless, the plateau frequency
qguencies. The bead size evolution of the power spectra IBbove which the shear modulus is increasingnnot be

therefore_ln very good_ agreement with our conclu5|on_ thaEietermined accurately here, but its value lies below 100 Hz.
the bending modulus is frequency dependent according to

Eq. (20).
10° ~T . .

2. In-plane fluctuations ~n

/Hz)
<
<
e

1

2

s
|

In-plane fluctuations power spectra measured with small
beads(1 and 1.5um) for actin-coated membranes show two
features in comparison to the fluid membranes case. An am-
plitude drop(by a factor 2.5-0.5 with respect to the one of
fluid membranes and a power-law dependence-1.85
+0.07) different from Brownian motionf("2). These two
changes show again the viscoelasticity of the membrane. Us-
ing Eq.(18), the frequency dependence of the shear modulus &
is directly computed from the in-plane fluctuations power
spectrum,

)

pectral Density (nm
S,--

10'4 1 1 1
10° 10°

, _ keT 1
Gop(f)= 3.2 sin(wz) W . (21) Frequency (Hz)

FIG. 16. Power spectra of the in-plane position fluctuations of 1

The shear moduli obtained from three power spectra with,m peads attached to actin-coated vesicles. A calibration power
amplitudes of the same magnitude order are plotted in Figspectrum of a Jum bead trapped in the fluidiashed lingis shown
15. Considering all experiments with 1 and L bead€18  for comparison. A common power-law exponent-of.87+0.02 is
curves and 8 vesiclgswe obtain that the shear modulus measured for these three curves. Lifieg andf =28 are drawn as
scales at high frequencies as guides to the eyes, respectively, above and below the power spectra.
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Spectral Density (nm’/Hz)

Frequency (Hz)

FIG. 17. Power spectra of in-plane position fluctuations of beads attached to actin-coated vesicles as a function of the bead diameter: 6,
3.1, and 1.5um from left to right. In each case, the power spectrum is compared to a calibration power spectrum of the bead trapped in
solution with the same trap stiffness. Power laws are fitted to the data: the exponents are, respecigdy,0.06, —1.94+0.03, and
—1.87+0.02.

To check if this model is valid, we also study the evolu- VI. CONCLUSION
tion of the in-plane power spectrum as a function of the bead
radius. In Fig. 17 are shown the in-plane power spectra com- \Whereas the elasticity of fluid membrane has been studied
pared to the calibration power spectra for three bead $&es extensively, less is known experimentally about viscoelastic,
3.1, and 1.5um). The amplitude drop between each pair of solid, or polymerized membranes, because few examples of
spectra decreases with an increasing bead size. Consistentliiis has been foundt3,44. Using biomolecules that possess
the power-law fitted to the data varies with the bead size: wggme original mechanical and rheological properties with re-
measure exponents 6f 2.08+0.06 for the 6um bead and  gpect to physico-chemical systems, we have tailored, by self-

—1.94+0.03 for the 3.1um one (data shown in Fig. 17 355embling membranes and cytoskeletal polymers, com-
—1.9 for 2um beadddata not shown whereas an exponent heyes that exhibit rich dynamical properties and, in
of —1.85+0.07 is measured for all experiments with 1 andgarticular viscoelasticity.

1'@ d’fé{‘egﬁidz'ufﬁgggmg ttrr]:ngi(taizcrj] St:éfv;/ev;?\ (t)rtw):err(\e/ei'mz In order to characterize the viscoelasticity of the vesicles
P : ' : € Te9IME Hated with actin filaments, we developed an experiment that
where the bulk viscous drag dominates and the regime wheré

the in-plane shear viscoelasticity governs the bead motion(?Omblnes micromanipulation with optical tweezers and

To understand why this transition is smooth, the hydrody-‘c'mgle'p"’lrtIC|e trac}( ing. We show that mechamcal expert-
nts can be achieved on these micrometer-sized systems.

namics around the probe bead needs to be more accuratél} . i " )
described. e analysis of thermally excited position fluctuations of

Finally, the self-assembled actin-coated membranes haJoP€e beads bound to the membranes is related to the vis-
the following properties. The presence of the actin networkeO€lastic behavior of these membranes.
induces the onset of a finite zero-frequency shear modulus We obtain a description of the composite membrane that
GJ5 (of the order of 1uN/m) and a strong increase of the IS |ndepend_ent of its microscopic detail. The presence of the
bending moduluga few 10&gT at 500 Ha. Moreover, the ~actin shell increases the bending modulus and induces the
membrane is viscoelastic as proved by the frequency depegXistence of a 2D shear modulus. Both moduli scale with
dence of the bending modulus and of the shear modulus: frequency with respective power-law exponents of 0.55
+0.21 and 0.8%0.07. These exponents are consistent with
kacm(f)~F0502L and G (f)~f08%0097 (23)  a common exponent of 0.75, which is expected from bulk
actin solution rheology. Whether the cell uses these dynami-
These two scaling laws are not inconsistent with a commoral properties of similar membranes is still an open question.
exponent of 0.75, as proposed in our model in relation to 3D
bulk rheology of actin. In this approach, both moduli are

related in Eqg. (3) by a simple quantitative relation: ACKNOWLEDGMENTS
kacm(f)~[Gip(f)h?]/3, with h of the order of 1um. This
corresponds taacy~ 100Kg T for Gop~ 1 uN/m at zero fre- We thank C. Marques and T. Duke for helpful discus-

quency, andkacy~100KgT for Gyp~4 uN/m at 500 Hz  sions. F.C.M. was supported by the CNRS, the National Sci-
(see Fig. 15 The difference between the two exponents mayence Foundation, and the Whitaker Foundation. This work
be due, however, to a relation betweex,, andG,, more  was supported in part by Fondation pour la RecherchdiMe
complicated than the linear one for a homogeneous plate. cale.
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